A New Anti-loxoscelic Serum Produced Against Recombinant Sphingomyelinase D: Results of Preclinical Trials

Daniel Manzoni de Almeida Laboratório de Imunoquímica, Instituto Butantan, São Paulo, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Norte, Natal, Brazil; Divisão Bioindustrial e Centro de Biotecnologia, Instituto Butantan, Natal, Brazil; Cardiff University, Wales College of Medicine, Cardiff, United Kingdom

Search for other papers by Daniel Manzoni de Almeida in
Current site
Google Scholar
PubMed
Close
,
Matheus de F. Fernandes-Pedrosa Laboratório de Imunoquímica, Instituto Butantan, São Paulo, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Norte, Natal, Brazil; Divisão Bioindustrial e Centro de Biotecnologia, Instituto Butantan, Natal, Brazil; Cardiff University, Wales College of Medicine, Cardiff, United Kingdom

Search for other papers by Matheus de F. Fernandes-Pedrosa in
Current site
Google Scholar
PubMed
Close
,
Rute M. Gonçalves de Andrade Laboratório de Imunoquímica, Instituto Butantan, São Paulo, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Norte, Natal, Brazil; Divisão Bioindustrial e Centro de Biotecnologia, Instituto Butantan, Natal, Brazil; Cardiff University, Wales College of Medicine, Cardiff, United Kingdom

Search for other papers by Rute M. Gonçalves de Andrade in
Current site
Google Scholar
PubMed
Close
,
José Roberto Marcelino Laboratório de Imunoquímica, Instituto Butantan, São Paulo, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Norte, Natal, Brazil; Divisão Bioindustrial e Centro de Biotecnologia, Instituto Butantan, Natal, Brazil; Cardiff University, Wales College of Medicine, Cardiff, United Kingdom

Search for other papers by José Roberto Marcelino in
Current site
Google Scholar
PubMed
Close
,
Hisako Gondo-Higashi Laboratório de Imunoquímica, Instituto Butantan, São Paulo, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Norte, Natal, Brazil; Divisão Bioindustrial e Centro de Biotecnologia, Instituto Butantan, Natal, Brazil; Cardiff University, Wales College of Medicine, Cardiff, United Kingdom

Search for other papers by Hisako Gondo-Higashi in
Current site
Google Scholar
PubMed
Close
,
Inácio de L. M. Junqueira de Azevedo Laboratório de Imunoquímica, Instituto Butantan, São Paulo, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Norte, Natal, Brazil; Divisão Bioindustrial e Centro de Biotecnologia, Instituto Butantan, Natal, Brazil; Cardiff University, Wales College of Medicine, Cardiff, United Kingdom

Search for other papers by Inácio de L. M. Junqueira de Azevedo in
Current site
Google Scholar
PubMed
Close
,
Paulo Lee Ho Laboratório de Imunoquímica, Instituto Butantan, São Paulo, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Norte, Natal, Brazil; Divisão Bioindustrial e Centro de Biotecnologia, Instituto Butantan, Natal, Brazil; Cardiff University, Wales College of Medicine, Cardiff, United Kingdom

Search for other papers by Paulo Lee Ho in
Current site
Google Scholar
PubMed
Close
,
Carmen van den Berg Laboratório de Imunoquímica, Instituto Butantan, São Paulo, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Norte, Natal, Brazil; Divisão Bioindustrial e Centro de Biotecnologia, Instituto Butantan, Natal, Brazil; Cardiff University, Wales College of Medicine, Cardiff, United Kingdom

Search for other papers by Carmen van den Berg in
Current site
Google Scholar
PubMed
Close
, and
Denise V. Tambourgi Laboratório de Imunoquímica, Instituto Butantan, São Paulo, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Norte, Natal, Brazil; Divisão Bioindustrial e Centro de Biotecnologia, Instituto Butantan, Natal, Brazil; Cardiff University, Wales College of Medicine, Cardiff, United Kingdom

Search for other papers by Denise V. Tambourgi in
Current site
Google Scholar
PubMed
Close
Restricted access

Envenomation by Loxosceles species (brown spider) can lead to local dermonecrosis and to serious systemic effects. The main toxic component in the venom of these spiders is sphingomyelinase D (SMase D) and various isoforms of this toxin are present in Loxosceles venoms. We have produced a new anti-loxoscelic serum by immunizing horses with recombinant SMase D. In the present study, we compared the neutralization efficacy of the new anti-loxoscelic serum and anti-arachnidic serum (the latter serum is used for therapy for loxoscelism in Brazil) against the toxic effects of venoms from spiders of the genus Loxosceles. Neutralization tests showed that anti-SMase D serum has a higher activity against toxic effects of L. intermedia and L. laeta venoms and similar or slightly weaker activity against toxic effects of L. gaucho than that of Arachnidic serum. These results demonstrate that recombinant SMase D can replace venom for anti-venom production and therapy.

Author Notes

  • 1

    Futrell JM, 1992. Loxoscelism. Am J Med Sci 304 :261–267.

  • 2

    Ginsburg CM, Weinberg AG, 1988. Hemolytic anemia and multiorgan failure associated with localized cutaneous lesion. J Pediatr 112 :496–499.

  • 3

    Gendron BP, 1990. Loxosceles reclusa envenomation. Am J Emerg Med 8 :51–54.

  • 4

    Bey TA, Walter FG, Lober W, Schmidt J, Spark R, Schlievert PM, 1997. Loxosceles arizonica bite associated with shock. Ann Emerg Med 30 :701–703.

  • 5

    Ramos-Cerrillo B, Olvera A, Odell GV, Zamudio F, Paniagua-Solis J, Alagon A, Stock RP, 2004. Genetic and enzymatic characterization of sphingomyelinase D isoforms from the North American fidleback spiders Loxosceles boneti and Loxosceles recluse. Toxicon 44 :507–514.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Newlands G, Isaacson C, Martindale C, 1982. Loxoscelism in the Transvaal, South Africa. Trans R Soc Trop Med Hyg 76 :610–615.

  • 7

    Denny WF, Dillaha CJ, Morgan PN, 1964. Hemotoxic effect of Loxoscels reclusa venom: in vivo and in vitro studies. J Lab Clin Med 64 :291.

  • 8

    Schenone H, Saavedra T, Rojas A, Villarroel F, 1998. Loxoscelism in Chile. Epidemiologic, clinical and experimental studies. Rev Inst Med Trop Sao Paulo 31 :403–415.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Dillaha CJ, Jansen T, Honeycut WM, Hayden CR, 1964. North America Loxoscelism. JAMA 188 :33–36.

  • 10

    Rees RS, Shack B, Withers F, Madden J, Franklin J, Lynch JB, 1981. Management of the brown recluse spider bite. Plast Reconstr Surg 68 :768–773.

  • 11

    Koh WL, 1998. When to worry about spiders bite: inaccurate diagnosis can have serious, even fatal, consequences. Postgrad Med 103 :235–250.

  • 12

    Allen C, 1992. Arachnid envenomation. Emerg Med Clin North Am 10 :269–299.

  • 13

    Anderson PC, 1997. Spider bites in the United States. Dermathol Clin 5 :307–311.

  • 14

    Walter FG, Bilden EF, Gibly RL, 1999. Envenomations. Crit Care Clin 15 :627–629.

  • 15

    Barrett SM, Romine-Jenkins M, Fisher DE, 1994. Dapsone or electric shock treatment of brown recluse spider envenomation. Ann Emerg Med 24 :21–25.

  • 16

    Bitterman-Deutsch O, Bergman R, Friedman-Birnbaum R, 1990. Brown spider bite. Harefuah 119 :137–139.

  • 17

    Wille RC, Morrow JD, 1998. Case report: dapsone hypersensitivity syndrome associated with treatment of the bite of brown spider. Am J Med Sci 296 :270–271.

  • 18

    Mold JW, Thompson DM, 2004. Management of brown recluse spider bites in primary care. J Am Board Fam Pract 1 :347–352.

  • 19

    Bryant SM, Pittman LM, 2003. Dapsone use in Loxosceles reclusa enevenomation: is there an indication? Am J Emerg Med 21 :89–90.

  • 20

    Elston MD, Miller MS, Young RJ III, Eggers J, McGlasson D, Schmidt WH, Brush A, 2005. Comparation of colchicines, dapsone, triamcinolone and diphenhydramine therapy for the treatment of brown recluse spider envenomation. Arch Dermatol 141 :595–597.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Smith CW, Micks DW, 1970. The role of polymorphonuclear leukocytes in the lesion caused by the venom of the brown spider, Loxosceles reclusa. Lab Invest 22 :141–144.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Wilson JR, Hagood CO, Jr Prather ID, 2005. Brown recluse spider bites: a complex problem wound. A brief review and case study. Ostomy Wound Manage 51 :59–66.

  • 23

    Pizzi T, 1957. A histopathological study on necrotic arachnidism by Loxosceles laeta. Bol Chil Parasitol 30 :34–36.

  • 24

    Sunderkotter C, Seeliger S, Schonlau F, Roth J, Hallmann R, Luger TA, Sorg C, Kolde G, 2001. Different pathway leading to cutaneous leukocytoclastic vasculitis in mice. Exp Dermatol 10 :391–404.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Tambourgi DV, Paixão-Cavalcante D, Gonçalves-de-Andrade RM, Fernandes-Pedrosa MF, Magnoli FC, Morgan PB, van den Berg CW, 2005. Loxosceles sphingomyelinase induces complement-dependent dermonecrosis, neutrophil infiltration, and endogenous gelatinase expression. J Invest Dermatol 124 :725–731.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Ministry of Health, 1998. Manual de Diagnóstico e Tratamento de Acidentes por Animais Peçonhento. Fundação Nacional de Saúde/Coordenação de Controle de Zoonoses e Animais Peçonhentos. Brasília: Centro Neurop.

    • PubMed
    • Export Citation
  • 27

    Kurpiewski G, Forrester LJ, Barret JT, Campbell BJ, 1981. Platelet aggregation and sphingomyelinase D activity of a purified toxin from the venom of Loxosceles recluse. Biochim Biophys Acta 678 :467–476.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Tambourgi DV, Magnoli FC, van den Berg CW, Morgan BP, de Araujo PS, Alves EW, Dias da Silva WD, 1998. Sphingomyelinases in the venom of the spider Loxosceles intermedia are responsible for both dermonecrosis and complement-dependent hemolysis. Biochem Biophys Res Commun 251 :366–373.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Tambourgi DV, Petricevich VL, Magnoli FC, Assaf SL, Jancar S, Dias da Silva W, 1998b. Endotoxemic-like shock induced by Loxosceles spider venoms, pathological changes and putative cytokine mediators. Toxicon 3 :391–403.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Tambourgi DV, Morgan BP, Gonçalves-de-Andrade RM, Magnoli FC, van den Berg CW, 2000. Loxosceles intermedia spider envenomation induces activation of an endogenous metallo-proteinase, resulting in cleavage of glycophorins from the erythrocyte surface and facilitating complement-mediated lysis. Blood 95 :683–691.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Tambourgi DV, de Sousa da Silva M, Billington SJ, Goncalves-de-Andrade RM, Magnoli FC, Songer JG, van den Berg CW, 2002. Mechanism of induction of complement susceptibility of erythrocytes by spider and bacterial sphingomyelinases. Immunol 107 :93–101.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Tambourgi DV, Fernandes-Pedrosa MF, van den Berg CW, Gonçalves-de-Andrade RM, Ferracini M, Paixão-Cavalcante D, Morgan BP, Rushmere NK, 2004. Molecular cloning, expression, function and immunoreactivities of members of a gene family of sphingomyelinases from Loxosceles venom glands. Mol Immunol 41 :831–840.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Paixão-Cavalcante D, van den Berg CW, Fernandes-Pedrosa MF, Gonçalves-de-Andrade RM, Tambourgi DV, 2006. Role of matrix metalloproteinases in HaCaT keratinocytes apoptosis induced by Loxosceles venom sphingomyelinase D. J Invest Dermatol 126 :61–68.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    van den Berg CW, Gonçalves-de-Andrade RM, Magnoli FC, Marchbank KJ, Tambourgi DV, 2002. Loxosceles spider venom induces metalloproteinases mediated cleavage of MCP/CD46 and MHC I and induces protection against C-mediated lysis. Immunology 107 :102–110.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Fernandes-Pedrosa MF, Junqueira de Azevedo IL, Gonçalves-de-Andrade RM, van den Berg CW, Ramos CR, Ho PL, Tam-bourgi DV, 2002. Molecular cloning and expression of a functional dermonecrotic and haemolytic factor from Loxosceles laeta venom. Biochem Biophys Res Commun 298 :638–645.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Bucherl W, 1969. Biology and venoms of the most important South American spiders of the genera Phoneutria, Loxosceles, Lycosa, and Latrodectus. Am Zool 9 :157–159.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC, 1985. Measurement of protein using bicinchronic acid. Anal Biochem 150 :76–85.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    Laemmli UK, 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 :680–685.

  • 39

    Towbin H, Staehelin TJ, Gordon J, 1979. Eletrophoretic transfer of proteins from acrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad USA 76 :4350–4354.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    Furlanetto RS, Santos NP, Navas J, 1962. Preparação, purificação e doseamento do sôro antiloxoscélico. Cienc Cult 14 :254.

  • 41

    Tokomura A, Majima E, Kariya Y, Tominagua K, Kogune K, Ogune K, Yasuda K, Fukuzawa K, 2002. Increased production of bioactive lysophosphatidic acid by serum lysophospholipase D in human pregnancy. J Biol Chem 277 :39436–39442.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    Klinman NR, Rockey JH, Karush F, 1965. Equine antihapten antibody II. The gamma-G (7S-gamma) components and their specific interaction. Int J Cancer Suppl 47 :51–60.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43

    Tambourgi DV, Magnoli FC, von Eicksted VRD, Benedetti ZC, Petrecevich VL, Dias da Silva W, 1995. Incorporation of a 35 kDa purified protein from Loxosceles intermedia spider venom transforms human erythrocytes into activators of autologous complement alternative pathway. J Immunol 155 :4459–4466.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Tambourgi DV, Pedrosa MF, de Andrade RM, Billington SJ, Griffiths M, van den Berg CW, 2007. Sphingomyelinases D induce direct association of C1q to the erythrocyte membrane causing complement mediated autologous haemolysis. Mol Immunol 44 :576–582.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45

    Gutierrez JM, Leon G, Lomonte B, 2003. Pharmacokinetic–pharmacodynamic relationships of immunoglobulin therapy for envenomation. Clin Pharmacokinet 42 :721–741.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46

    Scherrmann JM, 1994. Antibody treatment of toxin poisoning: recent advances. J Toxicol Clin Toxicol 32 :363–375.

  • 47

    Fernandes I, Mota I, 1991. Isolation of IgGT from hiperimmune horse anti-snake venom serum: its protective ability. Toxicon 29 :1373–1379.

  • 48

    Fernandes I, Takehara HA, Santos AC, Cormont F, Latinne D, Bazin H, Mota I, 1996. Neutralization of bothropic and crotalic venom toxic activities by IgG(T) and IgGa subclasses isolated from the immune horse serum. Toxicon 35 :931–936.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49

    Saetang T, Treamwattana N, Suttijitpaisal P, Ratanabanangkoon K, 1997. Quantitative comparison on the refinement of horse antivenom by salt fractionation and ion-exchange chromatography. J Chromatogr B 700 :233–239.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50

    Toro AF, Malta MB, Soares SL, da Rocha GC, da Silva Lira M, De Oliveira TA, Takehara HA, Lopes-Ferreira M, Santoro ML, Guidolin R, Gondo HH, Fernandes I, Bárbaro KC, 2006. Role of IgG(T) and IgGa isotypes obtained from arachnidic antivenom to neutralize toxic activities of Loxosceles gaucho, Phoneutria nigriventer and Tityus serrulatus venoms. Toxicon 48 :649–661.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51

    Fernandes-Pedrosa MF, Junqueira-de-Azevedo IL, Gonçalves-de-Andrade RM, Kobashi LS, Almeida DD, Ho PL, Tam-bourgi DV, 2008. Transcriptome analysis of Loxosceles laeta (Araneae, Sicariidae) spider venomous gland using expressed sequence tags. BMC Genomics 9 :279.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 319 277 6
Full Text Views 350 5 0
PDF Downloads 82 4 0
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save