Lack of Geospatial Population Structure Yet Significant Linkage Disequilibrium in the Reservoir of Plasmodium falciparum in Bongo District, Ghana

Shazia Ruybal-Pesántez School of BioSciences, Bio21 Institute/The University of Melbourne, Melbourne, Australia;
Department of Microbiology, New York University, New York, New York;

Search for other papers by Shazia Ruybal-Pesántez in
Current site
Google Scholar
PubMed
Close
,
Kathryn E. Tiedje School of BioSciences, Bio21 Institute/The University of Melbourne, Melbourne, Australia;
Department of Microbiology, New York University, New York, New York;

Search for other papers by Kathryn E. Tiedje in
Current site
Google Scholar
PubMed
Close
,
Mary M. Rorick Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan;
Howard Hughes Medical Institute, Ann Arbor, Michigan;
Department of Ecology and Evolution, University of Chicago, Chicago, Illinois;

Search for other papers by Mary M. Rorick in
Current site
Google Scholar
PubMed
Close
,
Lucas Amenga-Etego Navrongo Health Research Centre, Navrongo, Ghana;

Search for other papers by Lucas Amenga-Etego in
Current site
Google Scholar
PubMed
Close
,
Anita Ghansah Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana

Search for other papers by Anita Ghansah in
Current site
Google Scholar
PubMed
Close
,
Abraham R. Oduro Navrongo Health Research Centre, Navrongo, Ghana;

Search for other papers by Abraham R. Oduro in
Current site
Google Scholar
PubMed
Close
,
Kwadwo A. Koram Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana

Search for other papers by Kwadwo A. Koram in
Current site
Google Scholar
PubMed
Close
, and
Karen P. Day School of BioSciences, Bio21 Institute/The University of Melbourne, Melbourne, Australia;
Department of Microbiology, New York University, New York, New York;

Search for other papers by Karen P. Day in
Current site
Google Scholar
PubMed
Close
Restricted access

Malaria control in West Africa is impeded by the large reservoir of chronic asymptomatic Plasmodium falciparum infections in the human population. This study aimed to assess the extent of diversity in the P. falciparum reservoir in Bongo District (BD), Ghana, at the end of the dry season, the lowest point in malaria transmission over the course of the year. Analysis of the variation in 12 microsatellite loci was completed for 200 P. falciparum isolates collected from a cross-sectional survey of residents of all ages from two catchment areas in BD. Analysis of the multilocus haplotypes showed high levels of genetic diversity (He = 0.74), no population differentiation yet significant linkage disequilibrium (LD) (ISA = 0.0127, P = 0.006) in BD. Multilocus LD was significant between and within catchment areas even though every haplotype in the population was unique and the majority of individuals (84.0%) harbored multiple-clone infections. The linkage structure among multilocus haplotypes was not associated with sampling location. These data provide the first study with deep sampling of the P. falciparum reservoir in an area of seasonal malaria transmission in West Africa. The co-occurrence of high multiplicity of infection (multiple-clone infections) with significant multilocus LD is surprising given the likelihood of high recombination rates in BD. The results suggest that the linkage structure among multilocus haplotypes has not been shaped by geographic separation of parasite populations. Furthermore, the observed LD levels provide a baseline population genetic metric with putatively neutral markers to evaluate the effects of seasonality and malaria control efforts in BD.

Author Notes

Address correspondence to Karen P. Day, School of BioSciences, Bio21 Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia. E-mail: karen.day@unimelb.edu.au

Financial support: This research was supported by the Fogarty International Center at National Institutes of Health (Program on the Ecology and Evolution of Infectious Diseases [EEID], Grant number: R01-TW009670).

Authors’ addresses: Shazia Ruybal-Pesántez, Kathryn E. Tiedje, and Karen P. Day, School of BioSciences, Bio21 Institute/The University of Melbourne, Melbourne, Australia, E-mails: sruybal@student.unimelb.edu.au, kathryn.tiedje@unimelb.edu.au, and karen.day@unimelb.edu.au. Mary M. Rorick, Department of Ecology and Evolution, University of Chicago, Chicago, IL, E-mail: mmrorick@gmail.com. Lucas Amenga-Etengo and Abraham R. Oduro, Navrongo Health Research Center, Navrongo, Ghana, E-mails: lucasmenga@gmail.com and abraham.oduro@navrongo-hrc.org. Anita Ghansah and Kwadwo A. Koram, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana, E-mails: aghansah@noguchi.ug.edu.gh and kkoram@noguchi.ug.edu.gh.

  • 1.

    Bousema T, Okell L, Felger I, Drakeley C, 2014. Asymptomatic malaria infections: detectability, transmissibility and public health relevance. Nat Rev Microbiol 12 :833840.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Bruce MC, Donnelly CA, Packer M, Lagog M, Gibson N, Narara A, Walliker D, Alpers MP, Dar KP, 2000. Age- and species-specific duration of infection in asymptomatic malaria infections in Papua New Guinea. Parasitology 121 :247256.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Felger I, Maire M, Bretscher MT, Falk N, Tiaden A, Sama W, Beck H-P, Owusu-Agyei S, Smith TA, 2012. The dynamics of natural Plasmodium falciparum infections. PLoS One 7 :e45542.

  • 4.

    Anderson TJ et al.., 2000. Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol Biol Evol 17 :14671482.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Yalcindag E et al.., 2012. Multiple independent introductions of Plasmodium falciparum in South America. Proc Natl Acad Sci USA 109 :511516.

  • 6.

    Schultz L et al.., 2010. Multilocus haplotypes reveal variable levels of diversity and population structure of Plasmodium falciparum in Papua New Guinea, a region of intense perennial transmission. Malar J 9 :336.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Mobegi VA, Loua KM, Ahouidi AD, Satoguina J, Nwakanma DC, Amambua-Ngwa A, Conway DJ, 2012. Population genetic structure of Plasmodium falciparum across a region of diverse endemicity in West Africa. Malar J 11 :223.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Leclerc MC, Durand P, De Meeûs T, Robert V, Renaud F, 2002. Genetic diversity and population structure of Plasmodium falciparum isolates from Dakar, Senegal, investigated from microsatellite and antigen determinant loci. Microbes Infect 4 :685692.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Durand P, Michalakis Y, Cestier S, Oury B, Leclerc MC, Tibayrenc M, Renaud F, 2003. Significant linkage disequilibrium and high genetic diversity in a population of Plasmodium falciparum from an area (Republic of the Congo) highly endemic for malaria. Am J Trop Med Hyg 68 :345349.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Tiedje KE, Oduro A, Agongo G, Anyorigiya T, Azongo D, Awine T, Ghansah A, Pascual M, Koram K, Day KP, 2017. Seasonal variation in the epidemiology of asymptomatic Plasmodium falciparum infections across two catchment areas in Bongo District, Ghana. Am J Trop Med Hyg. 97 :199212

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    WHO, 2010. Basic Malaria Microscopy. Geneva, Switzerland: World Health Organization.

    • PubMed
    • Export Citation
  • 12.

    Snounou G, Zhu X, 1999. Biased distribution of msp1 and msp2 allelic variants in Plasmodium falciparum populations in Thailand. Trans R Soc Trop Med Hyg 93: 369–374.

    • PubMed
    • Export Citation
  • 13.

    Anderson TJ, Su XZ, Bockarie M, Lagog M, Day KP, 1999. Twelve microsatellite markers for characterization of Plasmodium falciparum from finger-prick blood samples. Parasitology 119: 113–125.

    • PubMed
    • Export Citation
  • 14.

    Matschiner M, Salzburger W, 2009. TANDEM: integrating automated allele binning into genetics and genomics workflows. Bioinformatics 25 :19821983.

  • 15.

    Glaubitz JC, 2004. CONVERT: a user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol Ecol Notes 4 :309310.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G, 2008. LOSITAN: a workbench to detect molecular adaptation based on a F st -outlier method. BMC Bioinformatics 9 :15.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Excoffier L, Lischer HEL, 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10 :564567.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Goudet J, 1995. FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86: 485–486.

    • PubMed
    • Export Citation
  • 19.

    Haubold B, Hudson RR, 2000. LIAN 3.0: detecting linkage disequilibrium in multilocus data. Linkage Analysis. Bioinformatics 16 :847848.

  • 20.

    Gerlach G, Jueterbock A, Kraemer P, Deppermann J, Harmand P, 2010. Calculations of population differentiation based on GST and D: forget GST but not all of statistics. Mol Ecol 19 :38453852.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Francisco AP, Vaz C, Monteiro PT, Melo-Cristino J, Ramirez M, Carriço JA, 2012. PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinformatics 13 :87.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Rogier C, Commences D, Trape JF, 1996. Evidence for an age-dependent pyrogenic threshold of Plasmodium falciparum parasitemia in highly endemic populations. Am J Trop Med Hyg 54 :613619.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Rogier C, 2000. Natural history of Plasmodium falciparum malaria and determining factors of the acquisition of antimalaria immunity in two endemic areas, Dielmo and Ndiop (Senegal). Bull Mem Acad R Med Belg 155 :218226.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Chenet SM, Schneider KA, Villegas L, Escalante AA, 2012. Local population structure of Plasmodium : impact on malaria control and elimination. Malar J 11 :1.

  • 25.

    Smith JM, Smith NH, O’Rourke M, Spratt BG, 1993. How clonal are bacteria? Proc Natl Acad Sci USA 90 :43844388.

  • 26.

    Razakandrainibe FG, Durand P, Koella JC, De Meeüs T, Rousset F, Ayala FJ, Renaud F, 2005. “Clonal” population structure of the malaria agent Plasmodium falciparum in high-infection regions. Proc Natl Acad Sci USA 102 :1738817393.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Anderson TJ, Day KP, 2000. Geographical structure and sequence evolution as inferred from the Plasmodium falciparum S-antigen locus. Mol Biochem Parasitol 106 :321326.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Gunawardena S, Ferreira MU, Kapilananda GMG, Wirth DF, Karunaweera ND, 2014. The Sri Lankan paradox: high genetic diversity in Plasmodium vivax populations despite decreasing levels of malaria transmission. Parasitology 2014 :880890.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hedrick PW, 1980. Hitchhiking: a comparison of linkage and partial selfing. Genetics 94 :791808.

  • 30.

    Alam MT et al.., 2011. Selective sweeps and genetic lineages of Plasmodium falciparum drug -resistant alleles in Ghana. J Infect Dis 203 :220227.

  • 31.

    Waltmann A et al.., 2017. Increasingly inbred and fragmented populations of Plasmodium vivax with declining transmission. BioRxiv, doi:10.1101/100610.

    • PubMed
    • Export Citation
  • 32.

    Jennison C et al.., 2015. Plasmodium vivax populations are more genetically diverse and less structured than sympatric Plasmodium falciparum populations. PLoS Negl Trop Dis 9 :120.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Batista CL, Barbosa S, Silva Bastos M, Viana SAS, Ferreira MU, 2015. Genetic diversity of Plasmodium vivax over time and space: a community-based study in rural Amazonia. Parasitology 2014 :111.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Escalante AA et al.., 2015. Malaria molecular epidemiology: lessons from the International Centers of Excellence for Malaria Research Network. Am J Trop Med Hyg 93 (Suppl): 7986.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 453 398 42
Full Text Views 480 22 0
PDF Downloads 153 9 0
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save