Body Size and Wing Shape Measurements as Quality Indicators of Aedes aegypti Mosquitoes Destined for Field Release

Heng Lin Yeap Bio21 Institute and the Department of Genetics, University of Melbourne, Melbourne, Victoria, Australia; School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Cairns, Queensland, Australia; Tropical Population Health Unit, Queensland Health, Cairns, Queensland, Australia

Search for other papers by Heng Lin Yeap in
Current site
Google Scholar
PubMed
Close
,
Nancy M. Endersby Bio21 Institute and the Department of Genetics, University of Melbourne, Melbourne, Victoria, Australia; School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Cairns, Queensland, Australia; Tropical Population Health Unit, Queensland Health, Cairns, Queensland, Australia

Search for other papers by Nancy M. Endersby in
Current site
Google Scholar
PubMed
Close
,
Petrina H. Johnson Bio21 Institute and the Department of Genetics, University of Melbourne, Melbourne, Victoria, Australia; School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Cairns, Queensland, Australia; Tropical Population Health Unit, Queensland Health, Cairns, Queensland, Australia

Search for other papers by Petrina H. Johnson in
Current site
Google Scholar
PubMed
Close
,
Scott A. Ritchie Bio21 Institute and the Department of Genetics, University of Melbourne, Melbourne, Victoria, Australia; School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Cairns, Queensland, Australia; Tropical Population Health Unit, Queensland Health, Cairns, Queensland, Australia

Search for other papers by Scott A. Ritchie in
Current site
Google Scholar
PubMed
Close
, and
Ary A. Hoffmann Bio21 Institute and the Department of Genetics, University of Melbourne, Melbourne, Victoria, Australia; School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Cairns, Queensland, Australia; Tropical Population Health Unit, Queensland Health, Cairns, Queensland, Australia

Search for other papers by Ary A. Hoffmann in
Current site
Google Scholar
PubMed
Close
Restricted access

There is increasing interest in rearing modified mosquitoes for mass release to control vector-borne diseases, particularly Wolbachia-infected Aedes aegypti for suppression of dengue. Successful introductions require release of high quality mosquitoes into natural populations. Potential indicators of quality are body size and shape. We tested to determine if size, wing/thorax ratio, and wing shape are associated with field fitness of Wolbachia-infected Ae. aegypti. Compared with field-collected mosquitoes, released mosquitoes were larger in size, with lower size variance and different wing shape but similar in wing-thorax ratio and its associated variance. These differences were largely attributed to nutrition and to a minor extent to wMel Wolbachia infection. Survival potential of released female mosquitoes was similar to those from the field. Females at oviposition sites tended to be larger than those randomly collected from BG-Sentinel traps. Rearing conditions should thus aim for large size without affecting wing/thorax ratios.

Author Notes

* Heng Lin Yeap, Department of Genetics, Bio21 Institute University of Melbourne, 30 Flemington Rd, Parkville VIC 3052 Australia. E-mail: hlyeap@unimelb.edu.au

Financial support: This project was funded by a grant from the Foundation for the National Institutes of Health through the Grand Challenges in Global Health Initiative of the Bill and Melinda Gates Foundation, the National Health and Medical Research Council, Australia, and the Urban Health Cluster of the CSIRO Climate Change Flagship program. AAH was funded by a Fellowship from the Australian Research Council.

Authors' addresses: Heng Lin Yeap, Nancy M. Endersby, and Ary A. Hoffmann, Department of Genetics, Parkville, VIC 3052, Australia, E-mails: hlyeap@unimelb.edu.au, nancye@unimelb.edu.au, and ary@unimelb.edu.au. Petrina H. Johnson, School of Biological Sciences, Faculty of Science, Monash University, Australia, E-mail: petrina.johnson@monash.edu. Scott A. Ritchie, Tropical Medicine and Rehabilitation Sciences, James Cook University, Cairns, Queensland, Australia, E-mail: scott.ritchie@jcu.edu.au.

  • 1.

    Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, Greenfield M, Durkan M, Leong YS, Dong Y, Cook H, Axford J, Callahan AG, Kenny N, Omodei C, McGraw EA, Ryan PA, Ritchie SA, Turelli M, O'Neill SL, 2011. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476: 454457.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, Leong YS, Dong Y, Axford J, Kriesner P, Lloyd AL, Ritchie SA, O'Neill SL, Hoffmann AA, 2011. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476: 450453.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Bellini R, Calvitti M, Medici A, Carrieri M, Celli G, Maini S, 2007. Use of the sterile insect technique against Aedes albopictus in Italy: first results of a pilot trial. Vreysen MJ, Robinson AS, Hendrichs J, eds. Area-Wide Control of Insect Pests: From Research to Field Implementation. Springer, Dordrecht, The Netherlands, 505515.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    de Valdez MR, Nimmo D, Betz J, Gong HF, James AA, Alphey L, Black WC, 2011. Genetic elimination of dengue vector mosquitoes. Proc Natl Acad Sci USA 108: 47724775.

  • 5.

    Helinski ME, Hassan MM, El-Motasim WM, Malcolm CA, Knols BG, El-Sayed B, 2008. Towards a sterile insect technique field release of Anopheles arabiensis mosquitoes in Sudan: irradiation, transportation, and field cage experimentation. Malar J 7: 65.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Alphey L, Benedict M, Bellini R, Clark GG, Dame DA, Service MW, Dobson SL, 2010. Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Dis 10: 295311.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Cerutti F, Bigler F, 1995. Quality assessment of Trichogramma-brassicae in the laboratory. Entomol Exp Appl 75: 1926.

  • 8.

    Dutton A, Bigler F, 1995. Flight activity assessment of the egg parasitoid Trichogramma brassicae (Hym: Trichogrammatidae) in laboratory and field conditions. Entomophaga 40: 223233.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Dutton A, Cerutti F, Bigler F, 1996. Quality and environmental factors affecting Trichogramma brassicae efficiency under field conditions. Entomol Exp Appl 81: 7179.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Kolliker-Ott UM, Blows MW, Hoffmann AA, 2003. Are wing size, wing shape and asymmetry related to field fitness of Trichogramma egg parasitoids? Oikos 100: 563573.

  • 11.

    Kazmer DJ, Luck RF, 1991. Female body size, fitness and biological control quality: field experiments with Trichogramma pretiosum. Colloques de l'INRA 56: 3740.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Navarro-Campos C, Martinez-Ferrer MT, Campos JM, Fibla JM, Alcaide J, Bargues L, Marzal C, Garcia-Mari F, 2011. The influence of host fruit and temperature on the body size of adult Ceratitis capitata (Diptera: Tephritidae) under laboratory and field conditions. Environ Entomol 40: 931938.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Montgomery BL, Ritchie SA, 2002. Roof gutters: a key container for Aedes aegypti and Ochlerotatus notoscriptus (Diptera: Culicidae) in Australia. Am J Trop Med Hyg 67: 244246.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Montgomery BL, Ritchie SA, Hart AJ, Long SA, Walsh ID, 2004. Subsoil drain sumps are a key container for Aedes aegypti in Cairns, Australia. J Am Mosq Control Assoc 20: 365369.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Wilder-Smith A, Ooi E-E, Vasudevan S, Gubler D, 2010. Update on dengue: epidemiology, virus evolution, antiviral drugs, and vaccine development. Curr Infect Dis Rep 12: 157164.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    McMeniman CJ, Lane AM, Fong AW, Voronin DA, Iturbe-Ormaetxe I, Yamada R, McGraw EA, O'Neill SL, 2008. Host adaptation of a Wolbachia strain after long-term serial passage in mosquito cell lines. Appl Environ Microbiol 74: 69636969.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Kambris Z, Blagborough AM, Pinto SB, Blagrove MS, Godfray HCJ, Sinden RE, Sinkins SP, 2010. Wolbachia stimulates immune gene expression and inhibits Plasmodium development in Anopheles gambiae. PLoS Pathog 6: e1001143.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu GJ, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O'Neill SL, 2009. A Wolbachia symbiont in Aedes aegypti limits infection with Dengue, Chikungunya, and Plasmodium. Cell 139: 12681278.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Pan XL, Zhou GL, Wu JH, Bian GW, Lu P, Raikhel AS, Xi ZY, 2012. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc Natl Acad Sci USA 109: E23E31.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    McMeniman CJ, Lane RV, Cass BN, Fong AW, Sidhu M, Wang YF, O'Neill SL, 2009. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323: 141144.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Harrington LC, Connors KJ, Cator LJ, Helinski ME, 2009. Assortative mating in the dengue vector mosquito, Aedes aegypti. Am J Trop Med Hyg 81: 1017.

  • 22.

    Ponlawat A, Harrington LC, 2009. Factors associated with male mating success of the dengue vector mosquito, Aedes aegypti. Am J Trop Med Hyg 80: 395400.

  • 23.

    Xue RD, Barnard DR, Muller GC, 2010. Effects of body size and nutritional regimen on survival in adult Aedes albopictus (Diptera: Culicidae). J Med Entomol 47: 778782.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Armbruster P, Hutchinson RA, 2002. Pupal mass and wing length as indicators of fecundity in Aedes albopictus and Aedes geniculatus (Diptera: Culicidae). J Med Entomol 39: 699704.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Maciel-De-Freitas R, Codego CT, Lourenco-De-Oliveira R, 2007. Body size-associated survival and dispersal rates of Aedes aegypti in Rio de Janeiro. Med Vet Entomol 21: 284292.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Nasci RS, 1986. Relationship between adult mosquito (Diptera, Culicidae) body size and parity in field populations. Environ Entomol 15: 874876.

  • 27.

    Scott TW, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Zhou H, Edman JD, 2000. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: population dynamics. J Med Entomol 37: 7788.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Breuker CJ, Brakefield PM, Gibbs M, 2007. The association between wing morphology and dispersal is sex-specific in the glanville fritillary butterfly Melitaea cinxia (Lepidoptera: Nymphalidae). Eur J Entomol 104: 445452.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Corbet SA, 2000. Butterfly nectaring flowers: butterfly morphology and flower form. Entomol Exp Appl 96: 289298.

  • 30.

    Hassall C, Thompson DJ, Harvey IF, 2008. Latitudinal variation in morphology in two sympatric damselfly species with contrasting range dynamics (Odonata: Coenagrionidae). Eur J Entomol 105: 939944.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Kemp DJ, 2002. Butterfly contests and flight physiology: why do older males fight harder? Behav Ecol 13: 456461.

  • 32.

    Hoffmann AA, Ratna E, Sgro CM, Barton M, Blacket M, Hallas R, De Garis S, Weeks AR, 2007. Antagonistic selection between adult thorax and wing size in field released Drosophila melanogaster independent of thermal conditions. J Evol Biol 20: 22192227.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Santos M, Iriarte PF, Cespedes W, 2005. Genetics and geometry of canalization and developmental stability in Drosophila subobscura. BMC Evol Biol 5: 7.

  • 34.

    Ritchie SA, Johnson PH, Freeman AJ, Odell RG, Graham N, Dejong PA, Standfield GW, Sale RW, O'Neill SL, 2011. A secure semi-field system for the study of Aedes aegypti. PLoS Negl Trop Dis 5: e988.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Ball TS, Ritchie SR, 2010. Sampling biases of the BG-Sentinel trap with respect to physiology, age, and body size of adult Aedes aegypti (Diptera: Culicidae). J Med Entomol 47: 649656.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Maciel-de-Freitas R, Eiras AE, Lourenco-de-Oliveira R, 2006. Field evaluation of effectiveness of the BG-Sentinel, a new trap for capturing adult Aedes aegypti (Diptera: Culicidae). Mem Inst Oswaldo Cruz 101: 321325.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Williams CR, Long SA, Russell RC, Ritchie SA, 2006. Field efficacy of the BG-sentinel compared with CDC backpack aspirators and CO2-baited EVS traps for collection of adult Aedes aegypti in Cairns, Queensland, Australia. J Am Mosq Control Assoc 22: 296300.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Chadee DD, Ritchie SA, 2010. Efficacy of sticky and standard ovitraps for Aedes aegypti in Trinidad, West Indies. J Vector Ecol 35: 395400.

  • 39.

    Chadee DD, Ritchie SA, 2010. Oviposition behavior and parity rates of Aedes aegypti collected in sticky traps in Trinidad, West Indies. Acta Trop 116: 212216.

  • 40.

    Hiss EA, Fuchs MS, 1972. Effect of matrone on oviposition in mosquito, Aedes aegypti. J Insect Physiol 18: 2217.

  • 41.

    Judson CL, 1967. Feeding and oviposition behavior in Aedes aegypti (L). I. Preliminary studies of physiological control mechanisms. Biol Bull 133: 369378.

  • 42.

    Lavoipierre MMJ, 1958. Biting behavior of mated and unmated females of an African strain of Aedes aegypti. Nature 181: 17811782.

  • 43.

    Ritchie SA, Rapley LP, Williams C, Johnson PH, Larkman M, Silcock RM, Long SA, Russell RC, 2009. A lethal ovitrap-based mass trapping scheme for dengue control in Australia: I. Public acceptability and performance of lethal ovitraps. Med Vet Entomol 23: 295302.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Detinova TS, 1962. Age-grouping methods in Diptera of medical importance with special reference to some vectors of malaria. Monogr Ser World Health Organ 47: 13191.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Clements AN, Boocock MR, 1984. Ovarian development in mosquitoes: stages of growth and arrest and follicular resorption. Physiol Entomol 9: 18.

  • 46.

    Gwadz RW, Spielman A, 1973. Corpus allatum control of ovarian development in Aedes aegypti. J Insect Physiol 19: 14411448.

  • 47.

    Lee SF, White VL, Weeks AR, Hoffmann AA, Endersby NM, 2012. High-throughput PCR assays to monitor Wolbachia infection in the dengue mosquito (Aedes aegypti) and Drosophila simulans. Appl Environ Microbiol 78: 47404743.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Rohlf FJ, 2004. tpsUtil, File Utility Program, Version 1.26. Department of Ecology and Evolution, State University of New York at Stony Brook.

  • 49.

    Rohlf FJ, 2010. tpsDig, Digitize Landmarks and Outlines, Version 2.16. Department of Ecology and Evolution, State University of New York at Stony Brook.

  • 50.

    Yeap HL, Mee P, Walker T, Weeks AR, O'Neill SL, Johnson P, Ritchie SA, Richardson KM, Doig C, Endersby NM, Hoffmann AA, 2011. Dynamics of the “popcorn” Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control. Genetics 187: 583595.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Vargas RE, Ya-umphan P, Phumala-Morales N, Komalamisra N, Dujardin JP, 2010. Climate associated size and shape changes in Aedes aegypti (Diptera: Culicidae) populations from Thailand. Infect Genet Evol 10: 580585.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Bookstein FL, 1991. Morphometric Tools for Landmark Data Geometry and Biology. New York: Cambridge University Press.

  • 53.

    Jirakanjanakit N, Leemingsawat S, Thongrungkiat S, Apiwathnasorn C, Singhaniyom S, Bellec C, Dujardin JP, 2007. Influence of larval density or food variation on the geometry of the wing of Aedes (Stegomyia) aegypti. Trop Med Int Health 12: 13541360.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Siegel JP, Novak RJ, Lampman RL, Steinly BA, 1992. Statistical appraisal of the weight wing length relationship of mosquitoes. J Med Entomol 29: 711714.

  • 55.

    Arnqvist G, Martensson T, 1998. Measurement error in geometric morphometrics: Empirical strategies to assess and reduce its impact on measures of shape. Acta Zoologica Academiae Scientiarum Hungaricae 44: 7396.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Klingenberg CP, McIntyre GS, 1998. Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with procrustes methods. Evolution 52: 13631375.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Klingenberg CP, 2011. MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Res 11: 353357.

  • 58.

    Miller GE, 1991. Asymptotic test statistics for coefficients of variation. Comm Statist Theory Methods 20: 33513363.

  • 59.

    Schluter D, 1988. Estimating the form of natural-selection on a quantitative trait. Evolution 42: 849861.

  • 60.

    Kozak M, 2010. dotplot.errors, a new R function to ease the pain of creating dotplots. Commun Biometry Crop Sci 5: 6977.

  • 61.

    Padmanabha H, Lord CC, Lounibos LP, 2011. Temperature induces trade-offs between development and starvation resistance in Aedes aegypti (L.) larvae. Med Vet Entomol 25: 445453.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Mohammed A, Chadee DD, 2011. Effects of different temperature regimens on the development of Aedes aegypti (L.) (Diptera: Culicidae) mosquitoes. Acta Trop 119: 3843.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Bader CA, Williams CR, 2012. Mating, ovariole number and sperm production of the dengue vector mosquito Aedes aegypti (L.) in Australia: broad thermal optima provide the capacity for survival in a changing climate. Physiol Entomol 37: 136144.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Briegel H, 1990. Metabolic relationship between female body size, reserves and fecundity of Aedes aegypti. J Insect Physiol 36: 165172.

  • 65.

    Naksathit AT, Scott TW, 1998. Effect of female size on fecundity and survivorship of Aedes aegypti fed only human blood versus human blood plus sugar. J Am Mosq Control Assoc 14: 148152.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Steinwascher K, 1982. Relationship between pupal mass and adult survivorship and fecundity for Aedes aegypti. Environ Entomol 11: 150153.

  • 67.

    Briegel H, Knusel I, Timmermann SE, 2001. Aedes aegypti: size, reserves, survival, and flight potential. J Vector Ecol 26: 2131.

  • 68.

    Nasci RS, 1991. Influence of larval and adult nutrition on biting persistence in Aedes aegypti (Diptera, Culicidae). J Med Entomol 28: 522526.

  • 69.

    Mogi M, Miyagi I, Abadi K, Syafruddin, 1996. Inter- and intraspecific variation in resistance to desiccation by adult Aedes (Stegomyia) spp. (Diptera: Culicidae) from Indonesia. J Med Entomol 33: 5357.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Helinski MEH, Harrington LC, 2011. Male mating history and body size influence female fecundity and longevity of the dengue vector Aedes aegypti. J Med Entomol 48: 202211.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Ponlawat A, Harrington LC, 2007. Age and body size influence male sperm capacity of the dengue vector Aedes aegypti (Diptera: Culicidae). J Med Entomol 44: 422426.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Scott TW, Amerasinghe PH, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Edman JD, 2000. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. J Med Entomol 37: 89101.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Loeschcke V, Bundgaard J, Barker JS, 1999. Reaction norms across and genetic parameters at different temperatures for thorax and wing size traits in Drosophila aldrichi and D-buzzatii. J Evol Biol 12: 605623.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Reiskind MH, Zarrabi AA, 2012. Is bigger really bigger? Differential responses to temperature in measures of body size of the mosquito, Aedes albopictus. J Insect Physiol 58: 911917.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Hoffmann AA, Woods RE, Collins E, Wallin K, White A, McKenzie JA, 2005. Wing shape versus asymmetry as an indicator of changing environmental conditions in insects. Aust J Entomol 44: 233243.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Schneider JR, Morrison AC, Astete H, Scott TW, Wilson ML, 2004. Adult size and distribution of Aedes aegypti (Diptera: Culicidae) associated with larval habitats in Iquitos, Peru. J Med Entomol 41: 634642.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Tun-Lin W, Burkot TR, Kay BH, 2000. Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia. Med Vet Entomol 14: 3137.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Muir LE, Kay BH, 1997. Aedes aegypti as a vector of dengue viruses in northern Queensland: what have we learnt? Arbovirus research in Australia Proceedings Seventh Arbovirus Research in Australia Symposium and Second Mosquito Control Association of Australia Conference. Surfers Paradise, Australia, 25–29 November, 1996, 190193.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Jirakanjanakit N, Dujardin J-P, 2005. Discrimination of Aedes aegypti (Diptera: Culicidae) laboratory lines based on wing geometry. Southeast Asian J Trop Med Public Health 36: 858861.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Jirakanjanakit N, Leemingsawat S, Dujardin JP, 2008. The geometry of the wing of Aedes (Stegomyia) aegypti in isofemale lines through successive generations. Infect Genet Evol 8: 414421.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 731 576 51
Full Text Views 910 56 3
PDF Downloads 458 44 3
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save