Spatial and Temporal Variation in Vector Competence of Culex pipiens and Cx. restuans Mosquitoes for West Nile Virus

A. Marm Kilpatrick University of California, Santa Cruz, California; Center for Vector Biology, Rutgers University, New Brunswick, New Jersey; University of New Mexico, Albuquerque, New Mexico; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts; Wadsworth Center, New York State Department of Health, Slingerlands, New York; State University of New York at Albany, Albany, New York

Search for other papers by A. Marm Kilpatrick in
Current site
Google Scholar
PubMed
Close
,
Dina M. Fonseca University of California, Santa Cruz, California; Center for Vector Biology, Rutgers University, New Brunswick, New Jersey; University of New Mexico, Albuquerque, New Mexico; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts; Wadsworth Center, New York State Department of Health, Slingerlands, New York; State University of New York at Albany, Albany, New York

Search for other papers by Dina M. Fonseca in
Current site
Google Scholar
PubMed
Close
,
Gregory D. Ebel University of California, Santa Cruz, California; Center for Vector Biology, Rutgers University, New Brunswick, New Jersey; University of New Mexico, Albuquerque, New Mexico; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts; Wadsworth Center, New York State Department of Health, Slingerlands, New York; State University of New York at Albany, Albany, New York

Search for other papers by Gregory D. Ebel in
Current site
Google Scholar
PubMed
Close
,
Michael R. Reddy University of California, Santa Cruz, California; Center for Vector Biology, Rutgers University, New Brunswick, New Jersey; University of New Mexico, Albuquerque, New Mexico; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts; Wadsworth Center, New York State Department of Health, Slingerlands, New York; State University of New York at Albany, Albany, New York

Search for other papers by Michael R. Reddy in
Current site
Google Scholar
PubMed
Close
, and
Laura D. Kramer University of California, Santa Cruz, California; Center for Vector Biology, Rutgers University, New Brunswick, New Jersey; University of New Mexico, Albuquerque, New Mexico; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts; Wadsworth Center, New York State Department of Health, Slingerlands, New York; State University of New York at Albany, Albany, New York

Search for other papers by Laura D. Kramer in
Current site
Google Scholar
PubMed
Close
Restricted access

Vector competence, the probability that a vector will transmit a pathogen after feeding on an infected host, is known to vary among vector species, populations, days since feeding, and temperature during the extrinsic incubation period. However, the extent of spatio-temporal variability and consistency in vector competence of populations is not known. We examined vector competence of Culex pipiens Linnaeus and Cx. restuans Theobald mosquitoes for West Nile virus collected over 3 years from 17 sites to measure spatial and temporal scales of variation in vector competence. We found extreme variation with 0–52% of mosquitoes transmitting West Nile virus at a single site between different sampling periods, and similar variation across populations. However, we also found that within a smaller geographic range, vector competence varied somewhat synchronously, suggesting that environmental and population genetic factors might influence vector competence. These results highlight the spatio-temporal variability in vector competence and the role of local processes.

Author Notes

*Address correspondence to A. Marm Kilpatrick, EE Biology/EMS, University of California, Santa Cruz, CA 95064. E-mail: marm@biology.ucsc.edu

Financial support: This study was supported by National Institute of Allergy and Infectious Diseases contract #NO1-AI-25490, Centers for Disease Control and Prevention grant 1RO1AI069217-01, and National Science Foundation grant EF-0914866 as part of the joint National Science Foundation–National Institutes of Health Ecology of Infectious Disease program.

Authors' addresses: A. Marm Kilpatrick, University of California, Santa Cruz, CA, E-mail: marm@biology.ucsc.edu. Dina M. Fonseca, Center for Vector Biology, Rutgers University, New Brunswick, NJ, E-mail: dinafons@rci.rutgers.edu. Gregory D. Ebel, Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, E-mail: gebel@salud.unm.edu. Michael R. Reddy, Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT, E-mail: michael.reddy@yale.edu. Laura D. Kramer, Wadsworth Center, New York State Department of Health, Slingerlands, NY, E-mail: kramer@wadsworth.org.

Reprint requests: Laura D. Kramer, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159.

  • 1.

    Hardy JL, Houk EJ, Kramer LD, Reeves WC, 1983. Intrinsic factors affecting vector competence of mosquitos for arboviruses. Annu Rev Entomol 28: 229262.

  • 2.

    Garrett-Jones C, 1964. Prognosis for interruption of malaria transmission through assessment of mosquitos vectorial capacity. Nature 204: 1173.

  • 3.

    MacDonald G, 1957. The Epidemiology and Control of Malaria. London: Oxford University Press.

  • 4.

    Anderson RM, May RM, 1991. Infectious Diseases of Humans: Dynamics and Control. London: Oxford University Press.

  • 5.

    Chamberlain R, Sudia WD, 1961. Mechanism of transmission of viruses by mosquitoes. Annu Rev Entomol 6: 371390.

  • 6.

    Kramer LD, Hardy JL, Presser SB, Houk EJ, 1981. Dissemination barriers for western equine encephalomyelitis virus in Culex tarsalis infected after ingestion of low viral doses. Am J Trop Med Hyg 30: 190197.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Grimstad PR, Paulson SL, Craig GB, 1985. Vector competence of Aedes hendersoni (Diptera, Culicidae) for La Crosse virus and evidence of a salivary gland escape barrier. J Med Entomol 22: 447453.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Paulson SL, Grimstad PR, Craig GB, 1989. Midgut and salivary gland barriers to Lacrosse virus dissemination in mosquitoes of the Aedes triseriatus group. Med Vet Entomol 3: 113123.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Hardy JL, 1988. Susceptibility and resistance of vector mosquitoes. Monath TP, ed. The Arboviruses: Epidemiology and Ecology. Boca Raton, FL: CRC Press, 87126.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Turell MJ, Dohm DJ, Sardelis MR, Oguinn ML, Andreadis TG, Blow JA, 2005. An update on the potential of North American mosquitoes (Diptera: Culicidae) to transmit West Nile virus. J Med Entomol 42: 5762.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Kilpatrick AM, LaDeau SL, Marra PP, 2007. Ecology of West Nile virus transmission and its impact on birds in the western hemisphere. Auk 124: 11211136.

  • 12.

    Komar N, Clark GG, 2006. West Nile virus activity in Latin America and the Caribbean. Revista Panam Salud Publica 19: 112117.

  • 13.

    Komar N, Langevin S, Hinten S, Nemeth N, Edwards E, Hettler D, Davis B, Bowen R, Bunning M, 2003. Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 9: 311322.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Reisen WK, Fang Y, Martinez VM, 2005. Avian host and mosquito (Diptera: Culicidae) vector competence determine the efficiency of West Nile and St. Louis encephalitis virus transmission. J Med Entomol 42: 367375.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Savage HM, Anderson M, Gordon E, McMillen L, Colton L, Charnetzky D, Delorey M, Aspen S, Burkhalter K, Biggerstaff BJ, Godsey M, 2006. Oviposition activity patterns and West Nile virus infection rates for members of the Culex pipiens complex at different habitat types within the hybrid zone, Shelby County, TN, 2002 (Diptera: Culicidae). J Med Entomol 43: 12271238.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Gomez A, Kilpatrick AM, Kramer LD, Dupuis AP, Jones MJ, Goetz SJ, Marra PP, Daszak P, Aguirre AA, 2008. Land use and West Nile virus seroprevalence in wild mammals. Emerg Infect Dis 14: 962965.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Gibbs SE, Wimberly MC, Madden M, Masour J, Yabsley MJ, Stallknecht DE, 2006. Factors affecting the geographic distribution of West Nile Virus in Georgia, USA: 2002–2004. Vector Borne Zoonotic Dis 6: 7382.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Andreadis TG, Anderson JF, Vossbrinck CR, Main AJ, 2004. Epidemiology of West Nile virus in Connecticut: a five-year analysis of mosquito data 1999–2003. Vector Borne Zoonotic Dis 4: 360378.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hamer GL, Kitron UD, Brawn JD, Loss SR, Ruiz MO, Goldberg TL, Walker ED, 2008. Culex pipiens (Diptera: Culicidae): a bridge vector of West Nile virus to humans. J Med Entomol 45: 125128.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Kilpatrick AM, Daszak P, Jones MJ, Marra PP, Kramer LD, 2006. Host heterogeneity dominates West Nile virus transmission. Proc Biol Sci 273: 23272333.

  • 21.

    Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P, 2006. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol 4: 606610.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kent R, Juliusson L, Weissmann M, Evans S, Komar N, 2009. Seasonal blood feeding behavior of Culex tarsalis (Diptera: Culicidae) in Weld County, Colorado, 2007. J Med Entomol 46: 380390.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Kilpatrick AM, Kramer LD, Campbell S, Alleyne EO, Dobson AP, Daszak P, 2005. West Nile virus risk assessment and the bridge vector paradigm. Emerg Infect Dis 11: 425429.

  • 24.

    Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P, Fonseca DM, 2007. Genetic influences on mosquito feeding behavior and the emergence of zoonotic pathogens. Am J Trop Med Hyg 77: 667671.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Goddard LB, Roth AE, Reisen WK, Scott TW, 2002. Vector competence of California mosquitoes for West Nile virus. Emerg Infect Dis 8: 13851391.

  • 26.

    Turell MJ, O'Guinn ML, Dohm DJ, Jones JW, 2001. Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus. J Med Entomol 38: 130134.

  • 27.

    Turell MJ, O'Guinn M, Oliver J, 2000. Potential for New York mosquitoes to transmit West Nile Virus. Am J Trop Med Hyg 62: 413414.

  • 28.

    Sardelis MR, Turell MJ, Dohm DJ, O'Guinn ML, 2001. Vector competence of selected North American Culex and Coquillettidia mosquitoes for West Nile virus. Emerg Infect Dis 7: 10181022.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Ebel GD, Rochlin I, Longacker J, Kramer LD, 2005. Culex restuans (Diptera: Culicidae) relative abundance and vector competence for West Nile virus. J Med Entomol 42: 838843.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Moudy RM, Meola MA, Morin LL, Ebel GD, Kramer LD, 2007. A newly emergent genotype of West Nile virus is transmitted earlier and more efficiently by Culex mosquitoes. Am J Trop Med Hyg 77: 365370.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Kilpatrick AM, Meola MA, Moudy RM, Kramer LD, 2008. Temperature, viral genetics, and the transmission of West Nile virus by Culex pipiens mosquitoes. PLoS Pathog 4: e1000092.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Ebel GD, Carricaburu J, Young D, Bernard KA, Kramer LD, 2004. Genetic and phenotypic variation of West Nile virus in New York, 2000–2003. Am J Trop Med Hyg 71: 493500.

  • 33.

    Dohm DJ, O'Guinn ML, Turell MJ, 2002. Effect of environmental temperature on the ability of Culex pipiens (Diptera: Culicidae) to transmit West Nile virus. J Med Entomol 39: 221225.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Reisen WK, Barker CM, Fang Y, Martinez VM, 2008. Does variation in Culex (Diptera: Culicidae) vector competence enable outbreaks of West Nile virus in California? J Med Entomol 45: 11261138.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Sardelis M, Turell M, O'Guinn M, Andre R, Roberts D, 2002. Vector competence of three North American strains of Aedes albopictus for West Nile virus. J Am Mosq Control Assoc 18: 284289.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Vaidyanathan R, Scott TW, 2007. Geographic variation in vector competence for West Nile virus in the Culex pipiens (Diptera: Culicidae) complex in California. Vector Borne Zoonotic Dis 7: 193198.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Hayes CG, Baker RH, Baqar S, Ahmed T, 1984. Genetic variation for West Nile virus susceptibility in Culex tritaeniorhynchus. Am J Trop Med Hyg 33: 715724.

  • 38.

    Vaidyanathan R, Scott TW, 2006. Seasonal variation in susceptibility to West Nile virus infection in Culex pipiens pipiens (L.) (Diptera: Culicidae) from San Joaquin County, California. J Vector Ecol 31: 423425.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Jia YQ, Moudy RM, Dupuis AP, Ngo KA, Maffei JG, Jerzak GVS, Franke MA, Kauffman EB, Kramer LD, 2007. Characterization of a small plaque variant of West Nile virus isolated in New York in 2000. Virology 367: 339347.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Aitken TH, 1977. An in vitro feeding technique for artificially demonstrating virus transmission by mosquitoes. Mosq News 37: 130133.

  • 41.

    Payne AF, Binduga-Gajewska I, Kauffman EB, Kramer LD, 2006. Quantitation of flaviviruses by fluorescent focus assay. J Virol Methods 134: 183189.

  • 42.

    Shi PY, Kauffman EB, Ren P, Felton A, Tai JH, Dupuis AP, Jones SA, Ngo KA, Nicholas DC, Maffei J, Ebel GD, Bernard KA, Kramer LD, 2001. High-throughput detection of West Nile virus RNA. J Clin Microbiol 39: 12641271.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Kauffman E, Jones S, Dupuis A II, Ngo K, Bernard K, Kramer LD, 2003. Virus detection protocols for West Nile virus in vertebrate and mosquito specimens. J Clin Microbiol 41: 36613667.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Fonseca DM, Keyghobadi N, Malcolm CA, Mehmet C, Schaffner F, Mogi M, Fleischer RC, Wilkerson RC, 2004. Emerging vectors in the Culex pipiens complex. Science 303: 15351538.

  • 45.

    Smith JL, Keyghobadi N, Matrone MA, Escher R, Fonseca DM, 2005. Cross-species comparison of microsatellite loci in the Culex pipiens complex and beyond. Mol Ecol Notes 5: 697700.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Fonseca DM, Atkinson CT, Fleischer RC, 1998. Microsatellite primers for Culex pipiens quinquefasciatus, the vector of avian malaria in Hawaii. Mol Ecol 7: 16171619.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Keyghobadi N, Matrone MA, Ebel GD, Kramer LD, Fonseca DM, 2004. Microsatellite loci from the northern house mosquito (Culex pipiens), a principal vector of West Nile virus in North America. Mol Ecol Notes 4: 2022.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Smith JL, Fonseca DM, 2004. Rapid assays for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: Culicidae). Am J Trop Med Hyg 70: 339345.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Hudson RR, Slatkin M, Maddison WP, 1992. Estimation of levels of gene flow from DNA-sequence data. Genetics 132: 583589.

  • 50.

    Pritchard JK, Stephens M, Donnelly P, 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945959.

  • 51.

    Reisen WK, Hardy JL, Presser SB, Chiles RE, 1996. Seasonal variation in the vector competence of Culex tarsalis (Diptera: Culicidae) from the Coachella valley of California for western equine encephalomyelitis and St. Louis encephalitis viruses. J Med Entomol 33: 433437.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Hardy JL, Meyer RP, Presser SB, Milby MM, 1990. Temporal variations in the susceptibility of a semi-isolated population of Culex tarsalis to peroral infection with western equine encephalomyelitis and St. Louis encephalitis viruses. Am J Trop Med Hyg 42: 500511.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Huang SM, Hamer GL, Molaei G, Walker ED, Goldberg TL, Kitron UD, Andreadis TG, 2009. Genetic variation associated with mammalian feeding in Culex pipiens from a West Nile virus epidemic region in Chicago, Illinois. Vector Borne Zoonotic Dis 9: 637642.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Styer LM, Meola MA, Kramer LD, 2007. West Nile virus infection decreases fecundity of Culex tarsalis females. J Med Entomol 44: 10741085.

  • 55.

    Kramer L, Ebel G, 2003. Dynamics of flavivirus infection in mosquitoes. Adv Virus Res 60: 187232.

  • 56.

    Pascual M, Ahumada JA, Chaves LF, Rodo X, Bouma M, 2006. Malaria resurgence in the East African highlands: temperature trends revisited. Proc Natl Acad Sci USA 103: 58295834.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Reisen WK, Reeves WC, Hardy J, Milby MM, 1991. Effects of climatological change on the population dynamics and vector competence of mosquito vectors in California. Proceedings of the California Mosquito and Vector Control Association 59: 1420.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Rogers DJ, Randolph SE, 2006. Climate change and vector-borne diseases. Adv Parasitol 62: 345381.

  • 59.

    Kramer LD, Hardy JL, Presser SB, 1983. Effect of temperature of extrinsic incubation on the vector competence of Culex tarsalis for western equine encephalomyelitis virus. Am J Trop Med Hyg 32: 11301139.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Delatte H, Gimonneau G, Triboire A, Fontenille D, 2009. Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of Chikunguna and dengue in the Indian Ocean. J Med Entomol 46: 3341.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Rueda LM, Patel KJ, Axtell RC, Stinner RE, 1990. Temperature dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera, Culicidae). J Med Entomol 27: 892898.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 661 532 35
Full Text Views 573 42 9
PDF Downloads 274 45 9
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save