Landscape Pattern Analysis and Bayesian Modeling for Predicting Oncomelania hupensis Distribution in Eryuan County, People’s Republic of China

Kun Yang Jiangsu Institute of Parasitic Diseases, Wuxi, People’s Republic of China; National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China; Department of Public Health and Epidemiology, Swiss Tropical Institute, Basel, Switzerland; Eryuan Schistosomiasis Control Station, Eryuan, People’s Republic of China

Search for other papers by Kun Yang in
Current site
Google Scholar
PubMed
Close
,
Xiao-Nong Zhou Jiangsu Institute of Parasitic Diseases, Wuxi, People’s Republic of China; National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China; Department of Public Health and Epidemiology, Swiss Tropical Institute, Basel, Switzerland; Eryuan Schistosomiasis Control Station, Eryuan, People’s Republic of China

Search for other papers by Xiao-Nong Zhou in
Current site
Google Scholar
PubMed
Close
,
Xiao-Hua Wu Jiangsu Institute of Parasitic Diseases, Wuxi, People’s Republic of China; National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China; Department of Public Health and Epidemiology, Swiss Tropical Institute, Basel, Switzerland; Eryuan Schistosomiasis Control Station, Eryuan, People’s Republic of China

Search for other papers by Xiao-Hua Wu in
Current site
Google Scholar
PubMed
Close
,
Peter Steinmann Jiangsu Institute of Parasitic Diseases, Wuxi, People’s Republic of China; National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China; Department of Public Health and Epidemiology, Swiss Tropical Institute, Basel, Switzerland; Eryuan Schistosomiasis Control Station, Eryuan, People’s Republic of China

Search for other papers by Peter Steinmann in
Current site
Google Scholar
PubMed
Close
,
Xian-Hong Wang Jiangsu Institute of Parasitic Diseases, Wuxi, People’s Republic of China; National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China; Department of Public Health and Epidemiology, Swiss Tropical Institute, Basel, Switzerland; Eryuan Schistosomiasis Control Station, Eryuan, People’s Republic of China

Search for other papers by Xian-Hong Wang in
Current site
Google Scholar
PubMed
Close
,
Guo-Jing Yang Jiangsu Institute of Parasitic Diseases, Wuxi, People’s Republic of China; National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China; Department of Public Health and Epidemiology, Swiss Tropical Institute, Basel, Switzerland; Eryuan Schistosomiasis Control Station, Eryuan, People’s Republic of China

Search for other papers by Guo-Jing Yang in
Current site
Google Scholar
PubMed
Close
,
Jürg Utzinger Jiangsu Institute of Parasitic Diseases, Wuxi, People’s Republic of China; National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China; Department of Public Health and Epidemiology, Swiss Tropical Institute, Basel, Switzerland; Eryuan Schistosomiasis Control Station, Eryuan, People’s Republic of China

Search for other papers by Jürg Utzinger in
Current site
Google Scholar
PubMed
Close
, and
Hong-Jun Li Jiangsu Institute of Parasitic Diseases, Wuxi, People’s Republic of China; National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China; Department of Public Health and Epidemiology, Swiss Tropical Institute, Basel, Switzerland; Eryuan Schistosomiasis Control Station, Eryuan, People’s Republic of China

Search for other papers by Hong-Jun Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Detailed knowledge of how local landscape patterns influence the distribution of Oncomelania hupensis, the intermediate host snail of Schistosoma japonicum, might facilitate more effective schistosomiasis control. We selected 12 villages in a mountainous area of Eryuan County, Yunnan Province, People’s Republic of China, and developed Bayesian geostatistical models to explore heterogeneities of landscape composition in relation to distribution of O. hupensis. The best-fitting spatio-temporal model indicated that the snail density was significantly correlated with environmental factors. Specifically, snail density was positively correlated with wetness and inversely correlated with the normalized difference vegetation index and mollusciciding, and snail density decreased as landscape patterns became more uniform. However, the distribution of infected snails was not significantly correlated with any of the investigated environmental factors and landscape metrics. Our enhanced understanding of O. hupensis ecology is important for spatial targeting of schistosomiasis control interventions.

Author Notes

Reprint requests: Xiao-Nong Zhou, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, 207 Rui Jin Er Road, Shanghai 200025, People’s Republic of China, E-mail: ipdzhouxn@sh163.net.
  • 1

    Steinmann P, Keiser J, Bos R, Tanner M, Utzinger J, 2006. Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect Dis 6 :411–425.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Chen MG, Feng Z, 1999. Schistosomiasis control in China. Parasitol Int 48 :11–19.

  • 3

    Utzinger J, Zhou XN, Chen MG, Bergquist R, 2005. Conquering schistosomiasis in China: the long march. Acta Trop 96 :69–96.

  • 4

    Zhou XN, Guo JG, Wu XH, Jiang QW, Zheng J, Dang H, Wang XH, Xu J, Zhu HQ, Wu GL, Li YS, Xu XJ, Chen HG, Wang TP, Zhu YC, Qiu DC, Dong XQ, Zhao NQ, Xia G, Wang LY, Zhang SQ, Lin DD, Chen MG, Hao Y, 2007. Epidemiology of schistosomiasis in the People’s Republic of China, 2004. Emerg Infect Dis 13 :1470–1476.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Liang S, Seto EY, Remais JV, Zhong B, Yang C, Hubbard A, Davis GM, Gu X, Qiu D, Spear RC, 2007. Environmental effects on parasitic disease transmission exemplified by schistosomiasis in western China. Proc Natl Acad Sci USA 104 :7110–7115.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Xu B, Gong P, Biging G, Liang S, Seto E, Spear R, 2004. Snail density prediction for schistosomiasis control using IKONOS and ASTER images. Photogramm Eng Rem S 70 :1285–1294.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Steinmann P, Zhou XN, Matthys B, Li YL, Li HJ, Chen SR, Yang Z, Fan W, Jia TW, Li LH, Vounatsou P, Utzinger J, 2007. Spatial risk profiling of Schistosoma japonicum in Eryuan County, Yunnan Province, China. Geospatial Health 2 :59–73.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Seto E, Xu B, Liang S, Gong P, Wu W, Davis G, Qiu D, Gu X, Spear R, 2002. The use of remote sensing for predictive modeling of schistosomiasis in China. Photogramm Eng Rem S 68 :167–174.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Wang LD, Chen HG, Guo JG, Zeng XJ, Hong XL, Xiong JJ, Wu XH, Wang XH, Wang LY, Xia G, Hao Y, Chin DP, Zhou XN, 2009. A strategy to control transmission of Schistosoma japonicum in China. N Engl J Med 360 :121–128.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Liang S, Yang C, Zhong B, Qiu D, 2006. Re-emerging schistosomiasis in hilly and mountainous areas of Sichuan, China. Bull World Health Organ 84 :139–144.

  • 11

    Wang RB, Wang TP, Wang LY, Guo JG, Yu Q, Xu J, Gao FH, Yin ZC, Zhou XN, 2004. Study on the re-emerging situation of schistosomiasis epidemics in areas already under control and interruption. Chin J Epidemiol 25 :564–567.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Wang L, Utzinger J, Zhou XN, 2008. Schistosomiasis control: experiences and lessons from China. Lancet 372 :1793–1795.

  • 13

    Gong P, Xu B, Liang S, 2006. Remote sensing and geographic information systems in the spatial temporal dynamics modeling of infectious diseases. Sci China C Life Sci 49 :573–582.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Zhou XN, Malone JB, Kristensen TK, Bergquist NR, 2001. Application of geographic information systems and remote sensing to schistosomiasis control in China. Acta Trop 79 :97–106.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Yang GJ, Vounatsou P, Zhou XN, Utzinger J, Tanner M, 2005. A review of geographic information system and remote sensing with applications to the epidemiology and control of schistosomiasis in China. Acta Trop 96 :117–129.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Brooker S, Hay SI, Bundy DAP, 2002. Tools from ecology: useful for evaluating infection risk models? Trends Parasitol 18 :70–74.

  • 17

    Yuan Y, Xu XJ, Dong HF, Jiang MS, Zhu HG, 2005. Transmission control of schistosomiasis japonica: implementation and evaluation of different snail control interventions. Acta Trop 96 :191–197.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Guo JG, Vounatsou P, Cao CL, Utzinger J, Zhu HQ, Anderegg D, Zhu R, He ZY, Li D, Hu F, Chen MG, Tanner M, 2005. A geographic information and remote sensing based model for prediction of Oncomelania hupensis habitats in the Poyang Lake area, China. Acta Trop 96 :213–222.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Gardner RH, Turner MG, O’Neill RV, 2001. Landscape Ecology in Theory and Practice: Pattern and Process. Bremen, Germany: Springer.

    • PubMed
    • Export Citation
  • 20

    Kitron U, 1998. Landscape ecology and epidemiology of vector-borne diseases: tools for spatial analysis. J Med Entomol 35 :435–445.

  • 21

    Martens WJM, McMichael AJ, 2002. Environmental Change, Climate and Health: Issues and Research Methods. Cambridge, United Kingdom: Cambridge University Press.

    • PubMed
    • Export Citation
  • 22

    Van Benthem BH, Vanwambeke SO, Khantikul N, Burghoorn-Maas C, Panart K, Oskam L, Lambin EF, Somboon P, 2005. Spatial patterns of and risk factors for seropositivity for dengue infection. Am J Trop Med Hyg 72 :201–208.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Linard C, Lamarque P, Heyman P, Ducoffre G, Luyasu V, Tersago K, Vanwambeke SO, Lambin EF, 2007. Determinants of the geographic distribution of Puumala virus and Lyme borreliosis infections in Belgium. Int J Health Geogr 6 :15.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Burel F, Baudry J, 2003. Landscape Ecology: Concepts, Methods and Applications. St. Albans, United Kingdom: Science Publishers.

    • PubMed
    • Export Citation
  • 25

    Gelman AB, 2004. Bayesian Data Analysis. Boca Raton, FL: CRC Press.

  • 26

    Lawson AB, Rodeiro V, Carmen L, Browne WJ, 2003. Disease Mapping with WinBUGS and MLwiN. Chichester, United Kingdom: Wiley.

    • PubMed
    • Export Citation
  • 27

    Gemperli A, Vounatsou P, Kleinschmidt I, Bagayoko M, Lengeler C, Smith T, 2004. Spatial patterns of infant mortality in Mali: the effect of malaria endemicity. Am J Epidemiol 159 :64–72.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Koukounari A, Sacko M, Keita AD, Gabrielli AF, Landouré A, Dembelé R, Clements AC, Whawell S, Donnelly CA, Fenwick A, Traoré M, Webster JP, 2006. Assessment of ultrasound morbidity indicators of schistosomiasis in the context of large-scale programs illustrated with experiences from Malian children. Am J Trop Med Hyg 75 :1042–1052.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Wang XH, Wu XH, Zhou XN, 2006. Bayesian estimation of community prevalences of Schistosoma japonicum infection in China. Int J Parasitol 36 :895–902.

  • 30

    Basáñez MG, Marshall C, Carabin H, Gyorkos T, Joseph L, 2004. Bayesian statistics for parasitologists. Trends Parasitol 20 :85–91.

  • 31

    Raso G, Vounatsou P, Gosoniu L, Tanner M, N’Goran EK, Utzinger J, 2006. Risk factors and spatial patterns of hookworm infection among schoolchildren in a rural area of western Côte d’Ivoire. Int J Parasitol 36 :201–210.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Yang GJ, Vounatsou P, Zhou XN, Tanner M, Utzinger J, 2005. A Bayesian-based approach for spatio-temporal modeling of county level prevalence of Schistosoma japonicum infection in Jiangsu province, China. Int J Parasitol 35 :155–162.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Yang K, Wang XH, Yang GJ, Wu XH, Qi YL, Li HJ, Zhou XN, 2008. An integrated approach to identify distribution of Oncomelania hupensis, the intermediate host of Schistosoma japonicum, in a mountainous region in China. Int J Parasitol 38 :1007–1016.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Steinmann P, Zhou XN, Li YL, Li HJ, Chen SR, Yang Z, Fan W, Jia TW, Li LH, Vounatsou P, 2007. Helminth infections and risk factor analysis among residents in Eryuan County, Yunnan Province, China. Acta Trop 104 :38–51.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Li XB, 2006. Analysis for schistosomiasis status of Eryuan County from 2000 to 2004. Parasit lnfect Dis 4 :148–149.

  • 36

    Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A, 2002. Bayesian measures of model complexity and fit. J R Stat Soc B 64 :583–639.

  • 37

    Box GE, Jenkins GM, Reinsel GC, 1994. Time Series Analysis: Forecasting and Control. Third edition. San Francisco, CA: Prentice Hall.

    • PubMed
    • Export Citation
  • 38

    Gelman A, Rubin DB, 1992. Inference from iterative simulations using multiple sequences. Stat Sci 7 :457–472.

  • 39

    Gurarie D, King CH, 2005. Heterogeneous model of schistosomiasis transmission and long-term control: the combined influence of spatial variation and age-dependent factors on optimal allocation of drug therapy. Parasitology 130 :49–65.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    Jiang Z, Zheng QS, Wang XF, Guan LZ, Hua HZ, 1997. Analysis of social factors and human behavior attributed to family distribution of schistosomiasis japonica cases. Southeast Asian J Trop Med Public Health 28 :285–290.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Zhou XN, Wang LY, Chen MG, Wu XH, Jiang QW, Chen XY, Zheng J, Utzinger J, 2005. The public health significance and control of schistosomiasis in China: then and now. Acta Trop 96 :97–105.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    Zhou XN, Li DD, Yang HM, Chen MG, Sun LP, Yang GJ, Hong QB, Malone JB, 2002. Use of Landsat TM satellite surveillance data to measure the impact of the 1998 flood on snail intermediate host dispersal in the lower Yangtze River Basin. Acta Trop 82 :199–205.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43

    Kristensen TK, Malone JB, McCarroll JC, 2001. Use of satellite remote sensing and geographic information systems to model the distribution and abundance of snail intermediate hosts in Africa: a preliminary model for Biomphalaria pfeifferi in Ethiopia. Acta Trop 79 :73–78.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Zhang ZY, Xu DZ, Zhou XN, Zhou Y, Liu SJ, 2005. Remote sensing and spatial statistical analysis to predict the distribution of Oncomelania hupensis in the marshlands of China. Acta Trop 96 :205–212.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45

    Li F, Xia DG, Ma CH, Jia XM, Zhang XZ, 1999. Reappearance of infected snails in positive snail spots in a mountainous region of Yunnan province. J Appl Parasit Dis 7 :61–64.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46

    Li YS, Raso G, Zhao ZY, He YK, Ellis MK, McManus DP, 2007. Large water management projects and schistosomiasis control, Dongting Lake region, China. Emerg Infect Dis 13 :973–979.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47

    Herzog F, 2001. Landscape metrics for assessment of landscape destruction and rehabilitation. Environ Manage 27 :91–107.

  • 48

    Yang GJ, Zhou XN, Wang TP, Li DD, Hong QB, Sun LP, 2002. Spatial autocorrelation analysis on schistosomiasis cases and Oncomelania snails in three provinces of the lower reach of Yangtze River. Chin J Parasitol Parasit Dis 20 :6–9.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49

    Davis GM, Wilke T, Zhang Y, Xu XJ, Qiu CP, Spolsky C, Qiu DC, Li Y, Xia MY, Feng Z, 1999. Snail-Schistosoma, Paragonimus interactions in China: population ecology, genetic diversity, coevolution and emerging diseases. Malacologia 41 :355–377.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 387 352 18
Full Text Views 410 4 0
PDF Downloads 72 3 0
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save