Susceptibility of Florida Mosquitoes to Infection with Chikungunya Virus

Michael H. Reiskind Florida Medical Entomology Laboratory, University of Florida, Vero Beach, Florida

Search for other papers by Michael H. Reiskind in
Current site
Google Scholar
PubMed
Close
,
Kendra Pesko Florida Medical Entomology Laboratory, University of Florida, Vero Beach, Florida

Search for other papers by Kendra Pesko in
Current site
Google Scholar
PubMed
Close
,
Catherine J. Westbrook Florida Medical Entomology Laboratory, University of Florida, Vero Beach, Florida

Search for other papers by Catherine J. Westbrook in
Current site
Google Scholar
PubMed
Close
, and
Christopher N. Mores Florida Medical Entomology Laboratory, University of Florida, Vero Beach, Florida

Search for other papers by Christopher N. Mores in
Current site
Google Scholar
PubMed
Close
Restricted access

Chikungunya virus (CHIKV) has caused recent, large epidemics on islands in the Indian Ocean, raising the possibility of more widespread CHIKV epidemics. Historically, CHIKV has been vectored by Aedes aegypti, but these outbreaks likely also involved Ae. albopictus. To examine the potential for an outbreak of CHIKV in Florida, we determined the susceptibility to CHIKV of F1 Ae. aegypti and Ae. albopictus from Florida. In addition, we also evaluated two well-characterized laboratory strains (Rockefeller and Lake Charles) of these species. We determined infection and dissemination rates as well as total body titer of mosquitoes 7 days post-exposure (pe) (Ae. albopictus) and 3, 7, and 10 days pe (Ae. aegypti). All mosquito strains were susceptible to both infection and dissemination, with some variation between strains. Our results suggest Florida would be vulnerable to transmission of CHIKV in urban and rural areas where the two vector species occur.

Author Notes

Reprint requests: Christopher N. Mores, Department of Pathobiological Sciences, Louisiana State University, School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, LA 70803, Telephone: 772-5387858, Fax: 225-578-9701, E-mail: cmores@gmail.com.
  • 1

    Enserink M, 2006. Massive outbreak draws fresh attention to little known virus. Science 311 :1085.

  • 2

    Bessaud M, Peyrefitte CN, Pastorino BAM, Tock F, Merle O, Colpart JJ, Dehecq JS, Girod R, Jaffar-Bandjee MC, Glass PJ, Parker M, Tolou HJ, Grandadam M, 2006. Chikungunya virus strains, Reunion Island outbreak. Emerg Infect Dis 12 :1604–1606.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Anonymous, 2006. Outbreak news: chikungunya, India. Wkly Epidemiol Rec 81 :409–410.

  • 4

    Chretien J, Anyamba A, Bedno S, Breiman R, Sang R, Sergon K, Powers A, Onyango C, Small J, Tucker C, Linthicum K, 2007. Drought-associated chikungunya emergence along coastal east Africa. Am J Trop Med Hyg 76 :405–407.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Ross R, 1956. The Newala epidemic. III. The virus: isolation, pathogenic properties and relationship to the epidemic. J Hyg (Lond) 54 :177–191.

  • 6

    Jupp PG, McIntosh B, 1988. Chikungunya disease. Monath T, ed. The Arboviruses: Epidemiology and Ecology. Boca Raton, FL: CRC Press, 137–157.

    • PubMed
    • Export Citation
  • 7

    Laras K, Sukri N, Larasati R, Bangs M, Kosin R, Djauzi WT, Master J, Koasaih H, Hartati S, Beckett C, Sedyaningsih E, Beecham H III, Corwin A, 2005. Tracking the re-emergence of epidemic chikungunya virus in Indonesia. Trans R Soc Trop Med Hyg 99 :128–141.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    AbuBakar S, Sam I, Wong P, MatRahim N, Hooi P, Roslan N, 2007. Reemergence of endemic chikungunya, Malaysia. Emerg Infect Dis 13 :147–149.

  • 9

    Farnon E, 2007. Update: chikungunya fever diagnosed among international travelers–United States, 2006. MMWR Morb Mortal Wkly Rep 56 :276–277.

  • 10

    Hochedez P, Jaureguiberry SB, Debruyne M, Bossi P, Hausfater P, Brucker G, Bricaire F, Caumes E, 2006. Chikungunya infection in travelers. Emerg Infect Dis 12 :1565–1567.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Lanciotti RS, Kosoy O, Laven J, Panella A, Velez J, Lambert A, Campbell G, 2007. Chikungunya virus in US travelers returning from India, 2006. Emerg Infect Dis 13 :764–767.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Parola P, de Lamballerie X, Jourdan J, Rovery C, Vaillant V, Minodier P, Brouqui P, Flahault A, Raoult D, Charrel RN, 2006. Novel chikungunya virus variant in travelers returning from Indian Ocean islands. Emerg Infect Dis 12 :1493–1499.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Reiter P, Fontenille D, Paupy C, 2006. Aedes albopictus as an epidemic vector of chikungunya virus: another emerging problem? Lancet Infect Dis 6 :463–464.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Zeller HG, 1998. Dengue, arboviruses and migrations in the Indian Ocean. Bull Soc Pathol Exot 91 :56–60.

  • 15

    Fontenille D, Rodhain F, 1989. Biology and distribution of Aedes albopictus and Aedes aegypti in Madagascar. J Am Mosq Control Assoc 5 :219–225.

  • 16

    Christophers S, 1960. Aedes aegypti, the Yellow Fever Mosquito: Its Life History, Bionomics and Structure. Cambridge, UK: Cambridge University Press.

    • PubMed
    • Export Citation
  • 17

    Darsie R, Ward G, 2005. Identification and Geographical Distribution of the Mosquitoes of North America, North of Mexico. Gainesville, FL: University Press of Florida.

    • PubMed
    • Export Citation
  • 18

    Hawley W, Reiter P, Copeland RS, Pumpuni C, Craig GB, 1987. Aedes albopictus in North America: probable introduction in used tires from northern Asia. Science 236 :1114–1116.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Benedict M, Levine R, Hawley W, Lounibos LP, 2007. Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector Borne Zoonotic Dis 7 :76–85.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    O’Meara GF, Evans L, Gettman A, Cuda J, 1995. Spread of Aedes albopictus and decline of Ae. aegypti (Diptera: Culicidae) in Florida. J Med Entomol 32 :554–562.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Mangiafico J, 1971. Chikungunya virus infection and transmission in five species of mosquito. Am J Trop Med Hyg 20 :642–645.

  • 22

    Tesh R, Gubler D, Rosen L, 1976. Variation among geographic strains of Aedes albopictus in susceptibility to infection with chikungunya virus. Am J Trop Med Hyg 25 :326–335.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Turell M, Beaman J, Tammariello R, 1992. Susceptibility of selected strains of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) to chikungunya virus. J Med Entomol 29 :49–53.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Mishra B, Ratho RK, 2006. Chikungunya re-emergence: possible mechanisms. Lancet 368 :918.

  • 25

    Schuffenecker I, Iteman I, Michault A, Murri S, Frangeul L, Vaney MC, Lavenir R, Pardigon N, Reynes JM, Pettinelli F, Biscornet L, Diancourt L, Michel S, Duquerroy S, Guigon G, Frenkiel MP, Brehin AC, Cubito N, Despres P, Kunst F, Rey FA, Zeller H, Brisse S, 2006. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med 3 :1058–1070.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Alto BW, Lounibos LP, Higgs S, Juliano SA, 2005. Larval competition differentially affects arbovirus infection in Aedes mosquitoes. Ecology 81 :3279–3288.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Gargan T, Bailey C, Higbee G, Gad A, El-Said S, 1983. The effect of laboratory colonization on the vector-pathogen interactions of Egyptian Culex pipiens and Rift Valley fever virus. Am J Trop Med Hyg 32 :1154–1163.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Alto BW, Lounibos LP, Juliano SA, 2003. Age-dependent blood-feeding of Aedes aegypti and Aedes albopictus on artificial and living hosts. J Am Mosq Control Assoc 19 :347–352.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Bustin S, 2000. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25 :169–193.

  • 30

    Lanciotti R, Kerst A, Nasci R, Godsey MS, Mitchell CJ, Savage HM, Komar N, Panella NA, Allen BC, Volpe KE, Davis BS, Roehrig JT, 2000. Rapid detection of West Nile virus from clinical specimens, field-collected mosquitoes and avian samples by a TaqMan reverse transcriptase-PCR assay. J Clin Microbiol 38 :4066–4071.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Richards S, Pesko K, Alto B, Mores C, 2007. Reduced infection in mosquitoes exposed to blood meals containing previously frozen flaviviruses. Virus Res 129 :224–227.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Sokal R, Rohlf F, 1995. Biometry. New York: W.H. Freeman and Company.

  • 33

    Dye C, 1986. Vectorial capacity: must we measure all its components? Parasitol Today 2 :203–209.

  • 34

    Reiter P, Lathrop S, Bunning M, Biggerstaff B, Singer D, Tiwari T, Baber L, Amador M, Thirion J, Hayes J, Seca C, Mendez J, Ramirez B, Robinson J, Rawlings J, Vorndam V, Waterman S, Gubler D, Clark G, Hayes E, 2003. Texas lifestyle limits transmission of dengue virus. Emerg Infect Dis 9 :86–89.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Centers for Disease Control and Prevention (CDC), 2006. Chikungunya fever diagnosed among international travelers–United States, 2005–2006. MMWR Morb Mortal Wkly Rep 55 :1040–1042.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 209 176 5
Full Text Views 473 5 1
PDF Downloads 41 6 1
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save