PREDICTIONS OF THE EPIDEMIOLOGIC IMPACT OF INTRODUCING A PRE-ERYTHROCYTIC VACCINE INTO THE EXPANDED PROGRAM ON IMMUNIZATION IN SUB-SAHARAN AFRICA

NICOLAS MAIRE Swiss Tropical Institute, Basel, Switzerland

Search for other papers by NICOLAS MAIRE in
Current site
Google Scholar
PubMed
Close
,
FABRIZIO TEDIOSI Swiss Tropical Institute, Basel, Switzerland

Search for other papers by FABRIZIO TEDIOSI in
Current site
Google Scholar
PubMed
Close
,
AMANDA ROSS Swiss Tropical Institute, Basel, Switzerland

Search for other papers by AMANDA ROSS in
Current site
Google Scholar
PubMed
Close
, and
THOMAS SMITH Swiss Tropical Institute, Basel, Switzerland

Search for other papers by THOMAS SMITH in
Current site
Google Scholar
PubMed
Close
Restricted access

We predict the effects of introduction of a pre-erythrocytic vaccine against Plasmodium falciparum into a malaria-endemic population in Africa. We use a stochastic simulation model that includes components of transmission, parasitology, and clinical epidemiology of malaria and was validated using the results of field trials of the RTS,S/AS02A vaccine. The results suggest that vaccines with efficacy similar to that of RTS,S/AS02A have a substantial impact on malaria morbidity and mortality during the first decade after their introduction, but have negligible effects on malaria transmission at levels of endemicity typical for sub-Saharan Africa. The main benefits result from prevention of morbidity and mortality in the first years of life. Vaccines with very short half-life or low efficacy may have little overall effect on incidence of severe malaria. A similar approach can be used to make predictions for other strategies for deployment of the vaccine and to other types of malaria vaccines and interventions.

Author Notes

Reprint requests: Thomas Smith, Swiss Tropical Institute, PO Box, CH-4002, Basel, Switzerland.
  • 1

    World Health Organization, 1996. Investing in Health Research and Development. Geneva: World Health Organization. TDR/Gen/96.1.

    • PubMed
    • Export Citation
  • 2

    Ballou WR, Arevalo-Herrera M, Carucci D, Richie TL, Corradin G, Diggs C, Druilhe P, Giersing BK, Saul A, Heppner DG, Kester KE, Lanar DE, Lyon J, Hill AV, Pan W, Cohen JD, 2004. Update on the clinical development of candidate malaria vaccines. Am J Trop Med Hyg 71 (2 Suppl):239–247.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Alonso PL, Sacarlal J, Aponte J, Leach A, Macete E, Milman J, Mandomando I, Spiessens B, Guinovart C, Espasa M, Bassat Q, Aide P, Ofori-Anyinam O, Navia MM, Corachan S, Ceuppens M, Dubois MC, Demoitie MA, Dubovsky F, Menendez C, Tornieporth N, Ballou WR, Thompson R, Cohen J, 2004. Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children: randomised controlled trial. Lancet 364 :1411–1420.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Halloran ME, Watelet L, Struchiner CJ, 1994. Epidemiologic effects of vaccines with complex direct effects in an age-structured population. Math Biosci 121 :193–225.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Smith T, Killeen G, Maire N, Ross A, Molineaux L, Tediosi F, Hutton G, Utzinger J, Dietz K, Tanner M, 2006. Mathematical modeling of the impact of malaria vaccines on the clinical epidemiology and natural history of Plasmodium falciparum malaria: overview. Am J Trop Med Hyg 75 (Suppl 2):1–10.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Maire N, Smith T, Ross A, Owusu-Agyei S, Dietz K, Molineaux L, 2006. A model for natural immunity to asexual blood stages of Plasmodium falciparum in endemic areas. Am J Trop Med Hyg 75 (Suppl 2):19–31.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Ross A, Killeen G, Smith T, 2006. Relationships of host infectivity to mosquitoes and asexual parasite density in Plasmodium falciparum. Am J Trop Med Hyg 75 (Suppl 2):32–37.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Carneiro I, Smith T, Lusingu J, Malima R, Utzinger J, Drakeley C, 2006. Modeling the relationship between the population prevalence of Plasmodium falciparum malaria and anemia. Am J Trop Med Hyg 75 (Suppl 2):82–89.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Ross A, Maire N, Molineaux L, Smith T, 2006. An epidemiologic model of severe morbidity and mortality caused by Plasmodium falciparum. Am J Trop Med Hyg 75 (Suppl 2):63–73.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Smith T, Ross A, Maire N, Rogier C, Molineaux L, 2006. An epidemiologic model of the incidence of acute illness in Plasmodium falciparum malaria. Am J Trop Med Hyg 75 (Suppl 2):56–62.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Ross A, Smith T, 2006. The effect of malaria transmission intensity on neonatal mortality in endemic areas. Am J Trop Med Hyg 75 (Suppl 2):74–81.

  • 12

    INDEPTH Network, 2002. Population, Health and Survival at INDEPTH Sites. Ottawa, Ontario, Canada: International Development Research Centre.

    • PubMed
    • Export Citation
  • 13

    Tediosi F, Maire N, Smith T, Hutton G, Utzinger J, Ross A, Tanner M, 2006. An approach to model the costs and effects of case management of Plasmodium falciparum malaria in sub-Saharan Africa. Am J Trop Med Hyg 75 (Suppl 2):90–103.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Maire N, Aponte J, Ross A, Thompson R, Utzinger J, Smith T, 2006. Modeling a field trial of the RTS,S/ASO2A malaria vaccine. Am J Trop Med Hyg 75 (Suppl 2):104–110.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Anderson RM, May RM, Gupta S, 1989. Non-linear phenomena in host-parasite interactions. Parasitology 99 (Suppl):S59–S79.

  • 16

    Halloran ME, Struchiner CJ, Spielman A, 1989. Modeling malaria vaccines. II: Population effects of stage-specific malaria vaccines dependent on natural boosting. Math Biosci 94 :115–149.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Koella JC, 1991. On the use of mathematical models of malaria transmission. Acta Trop 49 :1–25.

  • 18

    Struchiner CJ, Halloran ME, Spielman A, 1989. Modeling malaria vaccines. I: New uses for old ideas. Math Biosci 94 :87–113.

  • 19

    Abeku TA, Hay SI, Ochola S, Langi P, Beard B, de Vlas SJ, Cox J, 2004. Malaria epidemic early warning and detection in African highlands. Trends Parasitol 20 :400–405.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Kleinschmidt I, Sharp B, Mueller I, Vounatsou P, 2002. Rise in malaria incidence rates in South Africa: a small-area spatial analysis of variation in time trends. Am J Epidemiol 155 :257–264.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Dye C, Hasibeder G, 1986. Population dynamics of mosquito-borne disease: effects of flies which bite some people more frequently than others. Trans R Soc Trop Med Hyg 80 :69–77.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Trape JF, Rogier C, 1996. Combating malaria morbidity and mortality by reducing transmission. Parasitol Today 12 :236–240.

  • 23

    Marsh K, Snow R, 1999. Malaria transmission and morbidity. Parassitologia 41 :241–246.

  • 24

    Smith T, Charlwood JD, Kihonda J, Mwankusye S, Billingsley P, Meuwissen J, Lyimo E, Takken W, Teuscher T, Tanner M, 1993. Absence of seasonal variation in malaria parasitaemia in an area of intense seasonal transmission. Acta Trop 54 :55–72.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 214 164 21
Full Text Views 438 8 3
PDF Downloads 129 15 6
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save