DIAGNOSING INFECTION LEVELS OF FOUR HUMAN MALARIA PARASITE SPECIES BY A POLYMERASE CHAIN REACTION/LIGASE DETECTION REACTION FLUORESCENT MICROSPHERE-BASED ASSAY

DAVID T. McNAMARA
Search for other papers by DAVID T. McNAMARA in
Current site
Google Scholar
PubMed
Close
,
LAURIN J. KASEHAGEN
Search for other papers by LAURIN J. KASEHAGEN in
Current site
Google Scholar
PubMed
Close
,
BRIAN T. GRIMBERG
Search for other papers by BRIAN T. GRIMBERG in
Current site
Google Scholar
PubMed
Close
,
JENNIFER COLE-TOBIAN
Search for other papers by JENNIFER COLE-TOBIAN in
Current site
Google Scholar
PubMed
Close
,
WILLIAM E. COLLINS
Search for other papers by WILLIAM E. COLLINS in
Current site
Google Scholar
PubMed
Close
, and
PETER A. ZIMMERMAN
Search for other papers by PETER A. ZIMMERMAN in
Current site
Google Scholar
PubMed
Close
Restricted access

Improving strategies for diagnosing infection by the four human Plasmodium species parasites is important as field-based epidemiologic and clinical studies focused on malaria become more ambitious. Expectations for malaria diagnostic assays include rapid processing with minimal expertise, very high specificity and sensitivity, and quantitative evaluation of parasitemia to be delivered at a very low cost. Toward fulfilling many of these expectations, we have developed a post–polymerase chain reaction (PCR)/ligase detection reaction–fluorescent microsphere assay (LDR-FMA). This assay, which uses Luminex® FlexMAP™ microspheres, provides simultaneous, semi-quantitative detection of infection by all four human malaria parasite species at a sensitivity and specificity equal to other PCR-based assays. In blinded studies using P. falciparum-infected blood from in vitro cultures, we identified infected and uninfected samples with 100% concordance. Additionally, in analyses of P. falciparum in vitro cultures and P. vivax-infected monkeys, comparisons between parasitemia and LDR-FMA signal intensity showed very strong positive correlations (r > 0.95). Application of this multiplex Plasmodium species LDR-FMA diagnostic assay will increase the speed, accuracy, and reliability of diagnosing human Plasmodium species infections in epidemiologic studies of complex malaria-endemic settings.

Author Notes

Reprint requests: Peter A. Zimmerman, Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Wolstein Research Building, 4-125, Cleveland, OH 44106-7286, Telephone: 216-368-0508, Fax: 216-368-4825, E-mail: paz@case.edu.
  • 1

    Russell PF, 1955. Man’s Mastery of Malaria. London: Oxford University Press.

    • PubMed
    • Export Citation
  • 2

    Bruce-Chwatt LJ, 1985. Essential Malariology. London: William Heinemann Medical Books.

    • PubMed
    • Export Citation
  • 3

    Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI, 2005. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434 :214–217.

  • 4

    Richie TL, Saul A, 2002. Progress and challenges for malaria vaccines. Nature 415 :694–701.

  • 5

    Greenwood B, 2004. The use of anti-malarial drugs to prevent malaria in the population of malaria-endemic areas. Am J Trop Med Hyg 70 :1–7.

  • 6

    Gimnig JE, Vulule JM, Lo TQ, Kamau L, Kolczak MS, Phillips-Howard PA, Mathenge EM, ter Kuile FO, Nahlen BL, High-tower AW, Hawley WA, 2003. Impact of permethrin-treated bed nets on entomologic indices in an area of intense year-round malaria transmission. Am J Trop Med Hyg 68 :16–22.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Riehle MA, Srinivasan P, Moreira CK, Jacobs-Lorena M, 2003. Towards genetic manipulation of wild mosquito populations to combat malaria: advances and challenges. J Exp Biol 206 :3809–3816.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Pates H, Curtis C, 2005. Mosquito behavior and vector control. Annu Rev Entomol 50 :53–70.

  • 9

    McNamara DT, Thomson JM, Kasehagen LJ, Zimmerman PA, 2004. Development of a multiplex PCR-ligase detection reaction assay for diagnosis of infection by the four parasite species causing malaria in humans. J Clin Microbiol 42 :2403–2410.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Rougemont M, van Saanen M, Sahli R, Hinrikson HP, Bille J, Jaton K, 2004. Detection of four Plasmodium species in blood from humans by 18S rRNA gene subunit-based and species-specific real-time PCR assays. J Clin Microbiol 42 :5636–5643.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Mangold KA, Manson RU, Koay ES, Stephens L, Regner M, Thomson RB Jr, Peterson LR, Kaul KL, 2005. Real-time PCR for detection and identification of Plasmodium spp. J Clin Microbiol 43 :2435–2440.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Ohrt C, Purnomo , Sutamihardja MA, Tang D, Kain KC, 2002. Impact of microscopy error on estimates of protective efficacy in malaria-prevention trials. J Infect Dis 186 :540–546.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Felger I, Genton B, Smith T, Tanner M, Beck HP, 2003. Molecular monitoring in malaria vaccine trials. Trends Parasitol 19 :60–63.

  • 14

    Mehlotra RK, Lorry K, Kastens W, Miller SM, Alpers MP, Bockarie M, Kazura JW, Zimmerman PA, 2000. Random distribution of mixed species malaria infections in Papua New Guinea. Am J Trop Med Hyg 62 :225–231.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Mehlotra RK, Kasehagen LJ, Baisor M, Lorry K, Kazura JW, Bockarie MJ, Zimmerman PA, 2002. Malaria infections are randomly distributed in diverse holoendemic areas of Papua New Guinea. Am J Trop Med Hyg 67 :555–562.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, do Rosario VE, Thaithong S, Brown KN, 1993. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol 61 :315–320.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Kimura M, Kaneko O, Liu Q, Zhou M, Kawamoto F, Wataya Y, Otani S, Yamaguchi Y, Tanabe K, 1997. Identification of the four species of human malaria parasites by nested PCR that targets variant sequences in the small subunit rRNA gene. Parasitol Intl 46 :91–95.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Trager W, Jensen JB, 1976. Human malaria parasites in continuous culture. Science 193 :673–675.

  • 19

    Earle WC, Perez M, 1932. Enumeration of parasites in the blood of malarial patients. J Lab Clin Med 17 :1124–1130.

  • 20

    Kellar KL, Iannone MA, 2002. Multiplexed microsphere-based flow cytometric assays. Exp Hematol 30 :1227–1237.

  • 21

    Perandin F, Manca N, Calderaro A, Piccolo G, Galati L, Ricci L, Medici MC, Arcangeletti MC, Snounou G, Dettori G, Chezzi C, 2004. Development of a real-time PCR assay for detection of Plasmodium falciparum, Plasmodium vivax, and Plasmodium ovale for routine clinical diagnosis. J Clin Microbiol 42 :1214–1219.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Zimmerman PA, Mehlotra RK, Kasehagen LJ, Kazura JW, 2004. Why do we need to know more about mixed Plasmodium species infections in humans? Trends Parasitol 20 :440–447.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Lee MA, Tan CH, Aw LT, Tang CS, Singh M, Lee SH, Chia HP, Yap EP, 2002. Real-time fluorescence-based PCR for detection of malaria parasites. J Clin Microbiol 40 :4343–4345.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Farcas GA, Zhong KJ, Mazzulli T, Kain KC, 2004. Evaluation of the RealArt Malaria LC real-time PCR assay for malaria diagnosis. J Clin Microbiol 42 :636–638.

  • 25

    Iannone MA, Taylor JD, Chen J, Li MS, Rivers P, Slentz-Kesler KA, Weiner MP, 2000. Multiplexed single nucleotide polymorphism genotyping by oligonucleotide ligation and flow cytometry. Cytometry 39 :131–140.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Dunbar SA, van der Zee CA, Oliver KG, Karem KL, Jacobson JW, 2003. Quantitative, multiplexed detection of bacterial pathogens: DNA and protein applications of the Luminex LabMAP system. J Microbiol Methods 53 :245–252.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Plowe CV, Cortese JF, Djimde A, Nwanyanwu OC, Watkins WM, Winstanley PA, Estrada-Franco JG, Mollinedo RE, Avila JC, Cespedes JL, Carter D, Doumbo OK, 1997. Mutations in Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase and epidemiologic patterns of pyrimethamine-sulfadoxine use and resistance. J Infect Dis 176 :1590–1596.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Mehlotra RK, Fujioka H, Roepe PD, Janneh O, Ursos LM, Jacobs-Lorena V, McNamara DT, Bockarie MJ, Kazura JW, Kyle DE, Fidock DA, Zimmerman PA, 2001. Evolution of a unique Plasmodium falciparum chloroquine-resistance phenotype in association with pfcrt polymorphism in Papua New Guinea and South America. Proc Natl Acad Sci U S A 98 :12689–12694.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Cole-Tobian J, King CL, 2003. Diversity and natural selection in Plasmodium vivax Duffy binding protein gene. Mol Biochem Parasitol 127 :121–132.

  • 30

    Moody A, 2002. Rapid diagnostic tests for malaria parasites. Clin Microbiol Rev 15 :66–78.

  • 31

    Bruce MC, Donnelly CA, Alpers MP, Galinski MR, Barnwell JW, Walliker D, Day KP, 2000. Cross-species interactions between malaria parasites in humans. Science 287 :845–848.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Smith T, Genton B, Baea K, Gibson N, Narara A, Alpers MP, 2001. Prospective risk of morbidity in relation to malaria infection in an area of high endemicity of multiple species of Plasmodium. Am J Trop Med Hyg 64 :262–267.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Zimmerman PA, Woolley I, Masinde GL, Miller SM, McNamara DT, Hazlett F, Mgone CS, Alpers MP, Genton B, Boatin BA, Kazura JW, 1999. Emergence of FY*A(null) in a Plasmodium vivax-endemic region of Papua New Guinea. Proc Natl Acad Sci U S A 96 :13973–13977.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Patel SS, Mehlotra RK, Kastens W, Mgone CS, Kazura JW, Zimmerman PA, 2001. The association of the glycophorin C exon 3 deletion with ovalocytosis and malaria susceptibility in the Wosera, Papua New Guinea. Blood 98 :3489–3491.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Maier AG, Duraisingh MT, Reeder JC, Patel SS, Kazura JW, Zimmerman PA, Cowman AF, 2003. Plasmodium falciparum erythrocyte invasion through glycophorin C and selection for Gerbich negativity in human populations. Nat Med 9 :87–92.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Patel SS, King CL, Mgone CS, Kazura JW, Zimmerman PA, 2004. Glycophorin C (Gerbich antigen blood group) and band 3 polymorphisms in two malaria holoendemic regions of Papua New Guinea. Am J Hematol 75 :1–5.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 162 128 15
Full Text Views 1744 3 1
PDF Downloads 101 3 1
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save