Trends in the Prevalence of Antimicrobial Resistance in Escherichia coli Isolated from Outpatient Urine Cultures in French Amazonia

Flaubert Nkontcho Djamkeba Pharmacy Department, Cayenne General Hospital, French Guiana;

Search for other papers by Flaubert Nkontcho Djamkeba in
Current site
Google Scholar
PubMed
Close
,
Vincent Sainte-Rose Laboratory of Microbiology, Cayenne General Hospital, French Guiana;

Search for other papers by Vincent Sainte-Rose in
Current site
Google Scholar
PubMed
Close
,
Guy Roger Lontsi Ngoulla Intensive Care Unit, Cayenne General Hospital, French Guiana;

Search for other papers by Guy Roger Lontsi Ngoulla in
Current site
Google Scholar
PubMed
Close
,
Ariane Roujansky Intensive Care Unit, Cayenne General Hospital, French Guiana;

Search for other papers by Ariane Roujansky in
Current site
Google Scholar
PubMed
Close
,
Philippe Abboud Tropical and Infectious Diseases Department, Cayenne General Hospital, French Guiana;

Search for other papers by Philippe Abboud in
Current site
Google Scholar
PubMed
Close
,
Gaelle Walter Tropical and Infectious Diseases Department, Cayenne General Hospital, French Guiana;

Search for other papers by Gaelle Walter in
Current site
Google Scholar
PubMed
Close
,
Stephanie Houcke Intensive Care Unit, Cayenne General Hospital, French Guiana;

Search for other papers by Stephanie Houcke in
Current site
Google Scholar
PubMed
Close
,
Magalie Demar Laboratory of Microbiology, Cayenne General Hospital, French Guiana;
Tropical Biome and immunopathology CNRS UMR-9017, Inserm U 1019, Université de Guyane, French Guiana;

Search for other papers by Magalie Demar in
Current site
Google Scholar
PubMed
Close
,
Hatem Kallel Intensive Care Unit, Cayenne General Hospital, French Guiana;
Tropical Biome and immunopathology CNRS UMR-9017, Inserm U 1019, Université de Guyane, French Guiana;

Search for other papers by Hatem Kallel in
Current site
Google Scholar
PubMed
Close
,
Jean Marc Pujo Emergency Department, Cayenne General Hospital, French Guiana

Search for other papers by Jean Marc Pujo in
Current site
Google Scholar
PubMed
Close
, and
Felix Djossou Tropical and Infectious Diseases Department, Cayenne General Hospital, French Guiana;
Tropical Biome and immunopathology CNRS UMR-9017, Inserm U 1019, Université de Guyane, French Guiana;

Search for other papers by Felix Djossou in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT.

Antimicrobial resistance (AMR) in the community is increasing worldwide. We aimed to assess AMR trends in Escherichia coli from the community urine isolates in French Amazonia. We conducted a retrospective study from January 2016 to December 2022 in the Cayenne General Hospital microbiology laboratory (French Guiana). It included all urine samples positive for E. coli collected from adult outpatients. During the study period, 3,443 urinalyses positive for E. coli were studied. In 46% of cases, patients were women. In 64.4% of cases, E. coli were β-lactamase producers. The most frequently diagnosed resistance mechanisms were penicillinase production and sparing third-generation cephalosporins. Isolated E. coli were extended-spectrum β-lactamase (ESBL) producers in 6.1% of cases. Overall, E. coli was susceptible to amoxicillin in 35.9% [95% CI: 34.3–37.5], to amoxicillin/clavulanic acid in 62.2% [95% CI: 60.6–63.9], to cefotaxime in 94% [95% CI: 93.1–94.7], to gentamicin in 92.1% [95% CI: 89.1–92.6], to ofloxacin in 76.8% [95% CI: 75.3–78.2], to trimethoprim/sulfamethoxazole (SXT) in 58.8% [95% CI: 57.1–60.5], to fosfomycin in 99.1% [95% CI: 98.6–99.4], and to nitrofurantoin in 99% of cases [95% CI: 98.6–99.3]. We have observed a gradual decline in the susceptibility profile of E. coli for amoxicillin/clavulanic acid (P <0.001), piperacillin/tazobactam (P = 0.003), and temocillin (P = 0.006). However, susceptibility to ciprofloxacin was increasing (P = 0.001). In contrast, the susceptibility trends for amoxicillin, third-generation cephalosporins, gentamicin, SXT, nitrofurantoin, and fosfomycin remained stable over the 28 quarters of the study. In conclusion, isolated E. coli from outpatient urinalyses showed increased resistance profiles involving penicillinase and ESBL production. Close monitoring and strategies to decrease antibiotic consumption in the community are needed.

    • Supplemental Materials (PDF 112.48 KB)

Author Notes

Current contact information: Flaubert Nkontcho, Pharmacy Department, Cayenne General Hospital, French Guiana, E-mail: nkontcho@hotmail.com. Vincent Sainte-Rose and Magalie Demar, Laboratory of Microbiology, Cayenne General Hospital, French Guiana, E-mails: Vincent.sainte-rose@ch-cayenne.fr and magalie.demar@ch-cayenne.fr. Guy Roger Lontsi Ngoulla, Ariane Roujansky, and Stephanie Houcke, Intensive Care Unit, Cayenne General Hospital, French Guiana, E-mails: guylon6@orange.fr, Ariane.roujansky@ch-cayenne.fr, and stephanie.houcke@ch-cayenne.fr. Philippe Abboud, Gaelle Walter, and Felix Djossou, Tropical and Infectious Diseases Department, Cayenne General Hospital, French Guiana, E-mails: philippe.abboud@ch-cayenne.fr, gaelle.walter@ch-cayenne.fr, and felix.djossou@ch-cayenne.fr. Hatem Kallel, Intensive Care Unit, Cayenne General Hospital, French Guiana, and Tropical Biome and Immunopathology CNRS UMR-9017, Inserm U 1019, Université de Guyane, French Guiana, E-mail: kallelhat@yahoo.fr. Jean Marc Pujo, Emergency Department, Cayenne General Hospital, French Guiana, E-mail: jean.pujo@ch-cayenne.fr.

Address correspondence to Flaubert Nkontcho Djamkeba, Pharmacy Department, Cayenne General Hospital, French Guiana. E-mail: Nkontcho@hotmail.com
  • 1.

    Murray CJL et al., 2022. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 399: 629655.

  • 2.

    European Centre for Disease Prevention and Control , 2022. Assessing the Health Burden of Infections with Antibiotic-Resistant Bacteria in the EU/EEA, 2016–2020. Stockholm, Sweden: ECDC.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Thaden JT , Fowler VG , Sexton DJ , Anderson DJ , 2016. Increasing incidence of extended-spectrum β-lactamase-producing Escherichia coli in community hospitals throughout the southeastern United States. Infect Control Hosp Epidemiol 37: 4954.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Mestrovic T et al., 2022. The burden of bacterial antimicrobial resistance in the WHO European region in 2019: A cross-country systematic analysis. Lancet Public Health 7: e897e913.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Santé Publique France , 2023. Surveillance de la résistance bactérienne aux antibiotiques en soins de ville et en établissements pour personnes âgées dépendantes. Mission Primo: résultats 2021. Saint-Maurice, France: Santé Publique France.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    World Health Organization , 2020. Global Antimicrobial Resistance Surveillance System (GLASS) Report: Early Implementation 2020. Geneva, Switzerland: WHO.

  • 7.

    Goossens H , Ferech M , Vander Stichele R , Elseviers M ; ESAC Project Group , 2005. Outpatient antibiotic use in Europe and association with resistance: A cross-national database study. Lancet 365: 579587.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    European Centre for Disease Prevention and Control , 2021. Antimicrobial Consumption in the EU/EEA (ESAC-Net)—Annual Epidemiological Report for 2020. Stockholm, Sweden: ECDC.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Gonzales R , Steiner JF , Sande MA , 1997. Antibiotic prescribing for adults with colds, upper respiratory tract infections, and bronchitis by ambulatory care physicians. JAMA 278: 901904.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Nyquist AC , Gonzales R , Steiner JF , Sande MA , 1998. Antibiotic prescribing for children with colds, upper respiratory tract infections, and bronchitis. JAMA 279: 875877.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    European Centre for Disease Prevention and Control , 2022. Antimicrobial Consumption in the EU/EEA (ESAC-Net)—Annual Epidemiological Report 2021. Stockholm, Sweden: ECDC.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Etienne C , Pulcini C , 2015. Évaluation prospective des prescriptions antibiotiques d’un échantillon de médecins généralistes français. Presse Med 44: e59e66.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Cassini A et al., 2019. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect Dis 19: 5666.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Puvača N , de Llanos Frutos R , 2021. Antimicrobial resistance in Escherichia coli strains isolated from humans and pet animals. Antibiotics (Basel) 10: 69.

  • 15.

    Rodrigues WF , Miguel CB , Nogueira APO , Ueira-Vieira C , Paulino TDP , Soares SDC , De Resende EAMR , Lazo-Chica JE , Araújo MC , Oliveira CJ , 2016. Antibiotic resistance of bacteria involved in urinary infections in Brazil: A cross-sectional and retrospective study. Int J Environ Res Public Health 13: 918.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Curtis SJ , Kwong JC , Chaung YL , Mazza D , Walsh CJ , Chua KY , Stewardson AJ , 2024. Resistance to first-line antibiotic therapy among patients with uncomplicated acute cystitis in Melbourne, Australia: Prevalence, predictors and clinical impact. JAC Antimicrob Resist 6: dlad145.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    MacKinnon MC , Sargeant JM , Pearl DL , Reid-Smith RJ , Carson CA , Parmley EJ , McEwen SA , 2020. Evaluation of the health and healthcare system burden due to antimicrobial-resistant Escherichia coli infections in humans: A systematic review and meta-analysis. Antimicrob Resist Infect Control 9: 200.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Poirel L , Madec J-Y , Lupo A , Schink A-K , Kieffer N , Nordmann P , Schwarz S , 2018. Antimicrobial resistance in Escherichia coli. Microbiol Spectr 6. doi: 10.1128/microbiolspec.ARBA-0026-2017.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Ruppé É , Woerther P-L , Barbier F , 2015. Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann Intensive Care 5: 21.

  • 20.

    Sodagari HR , Varga C , 2023. Evaluating antimicrobial resistance trends in commensal Escherichia coli isolated from cecal samples of swine at slaughter in the United States, 2013–2019. Microorganisms 11: 1033.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Anjum MF et al., 2021. The potential of using E. coli as an indicator for the surveillance of antimicrobial resistance (AMR) in the environment. Curr Opin Microbiol 64: 152158.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Sali V , Nykäsenoja S , Heikinheimo A , Hälli O , Tirkkonen T , Heinonen M , 2021. Antimicrobial use and susceptibility of indicator Escherichia coli in Finnish integrated pork production. Front Microbiol 12: 754894.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Klingeberg A , Willrich N , Schneider M , Schmiemann G , Gágyor I , Richter D , Noll I , Eckmanns T , 2024. The percentage of antibiotic resistance in uncomplicated community-acquired urinary tract infections—Findings of the RedAres Project. Dtsch Arztebl Int 121: 175181.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    García A , Fox JG , 2021. A One Health perspective for defining and deciphering Escherichia coli pathogenic potential in multiple hosts. Comp Med 71: 345.

  • 25.

    GBD 2019 Antimicrobial Resistance Collaborators , 2022. Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 400: 22212248.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Tacconelli E et al., 2018. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18: 318327.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Wang S , Zhao S , Zhou Y , Jin S , Ye T , Pan X , 2023. Antibiotic resistance spectrum of E. coli strains from different samples and age-grouped patients: A 10-year retrospective study. BMJ Open 13: e067490.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Woerther P-L et al., 2013. Characterization of fecal extended-spectrum-β-lactamase-producing Escherichia coli in a remote community during a long time period. Antimicrob Agents Chemother 57: 50605066.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Raphael E , Glymour MM , Chambers HF , 2021. Trends in prevalence of extended-spectrum beta-lactamase-producing Escherichia coli isolated from patients with community- and healthcare-associated bacteriuria: Results from 2014 to 2020 in an urban safety-net healthcare system. Antimicrob Resist Infect Control 10: 118.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    NkontCho F et al., 2023. Antimicrobial Susceptibility of Community-Acquired Urine Bacterial Isolates in French Amazonia. Am J Trop Med Hyg 108: 927935.

  • 31.

    Kallel H , Resiere D , Houcke S , Hommel D , Pujo JM , Martino F , Carles M , Mehdaoui H , Antilles-Guyane Association of Critical Care Medicine , 2021. Critical care medicine in the French territories in the Americas: Current situation and prospects. Rev Panam Salud Publica 45: e46.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Societe Francaise de Microbiologie , 2018. Infections urinaires. Référentiels en microbiologie clinique. Paris, France: Société Française de Microbiologie, 181197.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Société Française de Microbiologie , 2018. Tableaux des concentrations critiques pour l’interprétation des CMI et des diamètres critiques des zones d’inhibition. CASFM/EUCAST. Paris, France: Société Française de Microbiologie; 3645.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Société Française de Microbiologie , 2020. Tableaux des concentrations critiques pour l’interprétation des CMI et des diamètres critiques des zones d’inhibition. CASFM/EUCAST. Paris, France: Société Française de Microbiologie; 3645.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Société Française de Microbiologie , 2013. Tableaux des concentrations critiques pour l’interprétation des CMI et des diamètres critiques des zones d’inhibition. CASFM/EUCAST. Paris, France: Société Française de Microbiologie; 2936.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Kahlmeter G , Brown DFJ , Goldstein FW , MacGowan AP , Mouton JW , Osterlund A , Rodloff A , Steinbakk M , Urbaskova P , Vatopoulos A , 2003. European harmonization of MIC breakpoints for antimicrobial susceptibility testing of bacteria. J Antimicrob Chemother 52: 145148.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Jarlier V , Nicolas MH , Fournier G , Philippon A , 1988. Extended broad-spectrum beta-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: Hospital prevalence and susceptibility patterns. Rev Infect Dis 10: 867878.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Chaïbi EB , Sirot D , Paul G , Labia R , 1999. Inhibitor-resistant TEM beta-lactamases: Phenotypic, genetic and biochemical characteristics. J Antimicrob Chemother 43: 447458.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Poirel L , Madec J-Y , Lupo A , Schink A-K , Kieffer N , Nordmann P , Schwarz S , 2018. Antimicrobial resistance in Escherichia coli. Microbiol Spectr 6. doi: 10.1128/microbiolspec.arba-0026–2017.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    World Health Organization , 2021. WHO Integrated Global Surveillance on ESBL-Producing E. coli Using a “One Health” Approach: Implementation and Opportunities. Geneva, Switzerland: WHO.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Flores-Mireles AL , Walker JN , Caparon M , Hultgren SJ , 2015. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 13: 269284.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Meštrović T , Matijašić M , Perić M , Čipčić Paljetak H , Barešić A , Verbanac D , 2020. The role of gut, vaginal, and urinary microbiome in urinary tract infections: From bench to bedside. Diagnostics (Basel) 11: 7.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Magruder M et al., 2019. Gut uropathogen abundance is a risk factor for development of bacteriuria and urinary tract infection. Nat Commun 10: 5521.

  • 44.

    Grigoryan L , Trautner BW , Gupta K , 2014. Diagnosis and management of urinary tract infections in the outpatient setting: A review. JAMA 312: 16771684.

  • 45.

    Stewardson AJ , Gaïa N , François P , Malhotra-Kumar S , Delémont C , Martinez de Tejada B , Schrenzel J , Harbarth S , Lazarevic V ; SATURN WP1 and WP3 Study Groups , 2015. Collateral damage from oral ciprofloxacin versus nitrofurantoin in outpatients with urinary tract infections: A culture-free analysis of gut microbiota. Clin Microbiol Infect 21: 344.e1344.e11.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Gupta K , Bhadelia N , 2014. Management of urinary tract infections from multidrug-resistant organisms. Infect Dis Clin North Am 28: 4959.

  • 47.

    Foxman B , 2014. Urinary tract infection syndromes: Occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect Dis Clin North Am 28: 113.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Société de Pathologie Infectieuse de Langue Française , 2015. Diagnostic et antibiothérapie des infections urinaires bactériennes communautairesde l’adulte. Actualisation au 11 décembre 2015 des recommandations initialement mises en ligne en mai 2014.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Caron F et al., 2018. Practice guidelines for the management of adult community-acquired urinary tract infections. Med Mal Infect 48: 327358.

  • 50.

    Tandogdu Z , Wagenlehner FME , 2016. Global epidemiology of urinary tract infections. Curr Opin Infect Dis 29: 7379.

  • 51.

    Patjas A , Martelius A , Ollgren J , Kantele A , 2024. International travel increases risk of urinary tract infection caused by extended-spectrum beta-lactamase-producing Enterobacterales-three-arm case-control study. J Travel Med 31: taad155.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Michael CA , Dominey-Howes D , Labbate M , 2014. The antimicrobial resistance crisis: Causes, consequences, and management. Front Public Health 2: 145.

  • 53.

    Planta MB , 2007. The role of poverty in antimicrobial resistance. J Am Board Fam Med 20: 533539.

  • 54.

    Kallel H , Rozé B , Pons B , Mayence C , Mathien C , Resiere D , Melot B , Hommel D , Mehdaoui H , Carles M , 2019. Infections tropicales graves dans les départements français d’Amérique, Antilles françaises et Guyane. Méd Intensive Réa 28: 202216.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Woerther P-L , Burdet C , Chachaty E , Andremont A , 2013. Trends in human fecal carriage of extended-spectrum β-lactamases in the community: Toward the globalization of CTX-M. Clin Microbiol Rev 26: 744758.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    European Food Safety Authority, European Centre for Disease Prevention and Control , 2019. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017. EFSA J 17: e05598.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Mughini-Gras L et al., 2019. Attributable sources of community-acquired carriage of Escherichia coli containing β-lactam antibiotic resistance genes: A population-based modelling study. Lancet Planet Health 3: e357e369.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Schechner V , Temkin E , Harbarth S , Carmeli Y , Schwaber MJ , 2013. Epidemiological interpretation of studies examining the effect of antibiotic usage on resistance. Clin Microbiol Rev 26: 289307.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Munoz-Price LS et al., 2013. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 13: 785796.

  • 60.

    Kaye KS , Engemann JJ , Mozaffari E , Carmeli Y , 2004. Reference group choice and antibiotic resistance outcomes. Emerg Infect Dis 10: 11251128.

  • 61.

    Harris AD , Karchmer TB , Carmeli Y , Samore MH , 2001. Methodological principles of case-control studies that analyzed risk factors for antibiotic resistance: A systematic review. Clin Infect Dis 32: 10551061.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Esteve-Palau E , Solande G , Sánchez F , Sorlí L , Montero M , Güerri R , Villar J , Grau S , Horcajada JP , 2015. Clinical and economic impact of urinary tract infections caused by ESBL-producing Escherichia coli requiring hospitalization: A matched cohort study. J Infect 71: 667674.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Hanna-Wakim RH et al., 2015. Epidemiology and characteristics of urinary tract infections in children and adolescents. Front Cell Infect Microbiol 5: 45.

  • 64.

    Kizilca O , Siraneci R , Yilmaz A , Hatipoglu N , Ozturk E , Kiyak A , Ozkok D , 2012. Risk factors for community-acquired urinary tract infection caused by ESBL-producing bacteria in children. Pediatr Int 54: 858862.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Paumier A , Asquier-Khati A , Thibaut S , Coeffic T , Lemenand O , Larramendy S , Leclère B , Caillon J , Boutoille D , Birgand G , 2022. Assessment of factors associated with community-acquired extended-spectrum β-lactamase–producing Escherichia coli urinary tract infections in France. JAMA Netw Open 5: e2232679.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    MacVane SH , Tuttle LO , Nicolau DP , 2014. Impact of extended-spectrum β-lactamase-producing organisms on clinical and economic outcomes in patients with urinary tract infection. J Hosp Med 9: 232238.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Baizet C , Ouar-Epelboin S , Walter G , Mosnier E , Moreau B , Djossou F , Epelboin L , 2019. Decreased antibiotic susceptibility of Enterobacteriaceae causing community-acquired urinary tract infections in French Amazonia. Med Mal Infect 49: 6368.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Pitout JDD , 2010. Infections with extended-spectrum beta-lactamase-producing enterobacteriaceae: Changing epidemiology and drug treatment choices. Drugs 70: 313333.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Merino I , Shaw E , Horcajada JP , Cercenado E , Mirelis B , Pallarés MA , Gómez J , Xercavins M , Martínez-Martínez L , De Cueto M , Cantón R , Ruiz-Garbajosa P ; ITUBRAS-GEIH-SEIMC Group , 2016. CTX-M-15-H30Rx-ST131 subclone is one of the main causes of healthcare-associated ESBL-producing Escherichia coli bacteraemia of urinary origin in Spain. J Antimicrob Chemother 71: 21252130.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Mathers AJ , Peirano G , Pitout JDD , 2015. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev 28: 565591.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Aslan AT , Akova M , 2019. Extended spectrum β-lactamase producing enterobacteriaceae: Carbapenem sparing options. Expert Rev Anti Infect Ther 17: 969981.

  • 72.

    Ramirez MS , Tolmasky ME , 2010. Aminoglycoside modifying enzymes. Drug Resist Updat 13: 151171.

  • 73.

    Kahlmeter G , Giske CG , Kirn TJ , Sharp SE , 2019. Point-counterpoint: Differences between the European Committee on Antimicrobial Susceptibility Testing and Clinical and Laboratory Standards Institute Recommendations for Reporting Antimicrobial Susceptibility Results. J Clin Microbiol 57: e01129e19.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 571 571 122
Full Text Views 31 31 9
PDF Downloads 34 34 12
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save