Evaluating Malaria Rapid Diagnostic Tests and Microscopy for Detecting Plasmodium Infection and Status of Plasmodium falciparum Histidine-Rich Protein 2/3 Gene Deletions in Southeastern Nigeria

Moses Ikegbunam Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria;
Molecular Research Foundation for Students and Scientist, Nnamdi Azikiwe University, Awka, Nigeria;

Search for other papers by Moses Ikegbunam in
Current site
Google Scholar
PubMed
Close
,
Maike Maurer Institute of Tropical Medicine, University of Tübingen, Germany;

Search for other papers by Maike Maurer in
Current site
Google Scholar
PubMed
Close
,
Harrison Abone Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria;

Search for other papers by Harrison Abone in
Current site
Google Scholar
PubMed
Close
,
Dorothy Ezeagwuna Departement of Parasitology and Entomology, Nnamdi Azikiwe University, Awka, Nigeria;

Search for other papers by Dorothy Ezeagwuna in
Current site
Google Scholar
PubMed
Close
,
Thaisa Lucas Sandri Institute of Tropical Medicine, University of Tübingen, Germany;
Synovo GmbH, Tübingen, Germany;

Search for other papers by Thaisa Lucas Sandri in
Current site
Google Scholar
PubMed
Close
,
Charles Esimone Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria;
Molecular Research Foundation for Students and Scientist, Nnamdi Azikiwe University, Awka, Nigeria;

Search for other papers by Charles Esimone in
Current site
Google Scholar
PubMed
Close
,
Olusola Ojurongbe Department of Medical Microbiology & Parasitology, Ladoke Akintola University of Technology, Ogbomosho, Nigeria;

Search for other papers by Olusola Ojurongbe in
Current site
Google Scholar
PubMed
Close
,
Tamirat Gebru Woldearegai Institute of Tropical Medicine, University of Tübingen, Germany;
German Center for Infection Research (DZIF), Tübingen, Germany;

Search for other papers by Tamirat Gebru Woldearegai in
Current site
Google Scholar
PubMed
Close
,
Andrea Kreidenweiss Institute of Tropical Medicine, University of Tübingen, Germany;
German Center for Infection Research (DZIF), Tübingen, Germany;
Center de Recherches Médicales de Lambaréné (CERMEL), Gabon

Search for other papers by Andrea Kreidenweiss in
Current site
Google Scholar
PubMed
Close
,
Jana Held Institute of Tropical Medicine, University of Tübingen, Germany;
German Center for Infection Research (DZIF), Tübingen, Germany;
Center de Recherches Médicales de Lambaréné (CERMEL), Gabon

Search for other papers by Jana Held in
Current site
Google Scholar
PubMed
Close
, and
Rolf Fendel Institute of Tropical Medicine, University of Tübingen, Germany;
German Center for Infection Research (DZIF), Tübingen, Germany;
Center de Recherches Médicales de Lambaréné (CERMEL), Gabon

Search for other papers by Rolf Fendel in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT.

Delays in malaria diagnosis increase treatment failures and deaths. In endemic regions, standard diagnostic methods are microscopy and malaria rapid diagnostic tests (mRDTs) detecting Plasmodium falciparum histidine-rich protein 2/3 (PFHRP2/PFHRP3), but gene deletions can allow certain parasites to remain undetected. We enlisted a cohort comprising 207 symptomatic individuals, encompassing both children and adults, at a hospital in Nnewi, Nigeria. The prevalence of parasites was determined using a highly sensitive, species-specific quantitative polymerase chain reaction (SS-qPCR). Within a subset of 132 participants, we assessed the sensitivity and specificity of microscopy and HRP2-mRDTs in comparison to SS-qPCR for the detection of P. falciparum. We also investigated the prevalence of pfhrp2/pfhrp3 gene deletions. Greater sensitivity was achieved with mRDTs (95%) compared with microscopy (77%). Also, mRDTs exhibited greater specificity (68%) than microscopy (44%). The positive predictive value of mRDTs (89%) surpassed that of microscopy (80%), suggesting a greater probability of accurately indicating the presence of infection. The negative predictive value of mRDTs (82%) was far greater than microscopy (39%). Of the 165 P. falciparum–positive samples screened for pfhrp2/pfhrp3 gene deletions, one gene deletion was detected in one sample. Regarding infection prevalence, 84% were positive for Plasmodium spp. (by reverse transcription [RT]-qPCR), with P. falciparum responsible for the majority (97%) of positive cases. Thus, exclusive reliance on microscopy in endemic areas may impede control efforts resulting from false negatives, underscoring the necessity for enhanced training and advocating for high-throughput molecular testing such as RT-qPCR or qPCR at referral centers to address limitations.

    • Supplemental Materials (PDF 157.33 KB)

Author Notes

Financial support: This work was funded in part through a Deutscher Akademischer Austauschdienst research grant received by I. Moses.

Disclosure: The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. This study received ethical approval from the Ethics Review Board, Nnamdi Azikiwe University Teaching Hospital, Nnewi, southeastern Nigeria (approval no. NAUTH/CS/66/Vol.11/185/2018/118). Written informed consent was obtained from participants or parents/guardians of all participating children.

Data availability: The data sets used in this study are available at the repository of the Institute for Tropical Medicine, Germany.

Authors’ addresses: Moses Ikegbunam, Harrison Abone, and Charles Esimone, Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria, E-mails: mn.ikegbunam@unizik.edu.ng, harrisonabone@gmail.com, and co.esimone@unizik.edu.ng. Maike Maurer, Tamirat Gebru Woldearegai, Andrea Kreidenweiss, Jana Held, and Rolf Fendel, Institute of Tropical Medicine, University of Tübingen, Germany, E-mails: m.maurer94@gmx.de, tamirat-gebru.woldearegai@uni-tuebingen.de, andrea.kreidenweiss@uni-tuebingen.de, jana.held@uni-tuebingen.de, and rolf.fendel@uni-tuebingen.de. Dorothy Ezeagwuna, Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka, Nigeria, E-mail: d.ezeagwuna@unizik.edu.ng. Thaisa Lucas Sandri, Synovo GmbH, Tübingen, Germany, E-mail: thasandri81@gmail.com. Olusola Ojurongbe, Department of Medical Microbiology & Parasitology, Ladoke Akintola University of Technology, Ogbomosho, Nigeria, E-mail: oojurongbe@lautech.edu.ng.

Address correspondence to Rolf Fendel, Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074 Tübingen, Germany. E-mail: rolf.fendel@uni-tuebingen.de
  • 1.

    World Health Organization , 2022. World Malaria Report 2022. Geneva, Switzerland: WHO.

  • 2.

    Rosenthal PJ , 2022. Malaria in 2022: Challenges and progress. Am J Trop Med Hyg 106: 1565–1567.

  • 3.

    Feleke SM et al., 2021. Plasmodium falciparum is evolving to escape malaria rapid diagnostic tests in Ethiopia. Nat Microbiol 6: 1289–1299.

  • 4.

    Gao L , Shi Q , Liu Z , Li Z , Dong X , 2023. Impact of the COVID-19 pandemic on malaria control in Africa: A preliminary analysis. Trop Med Infect Dis 8: 67.

  • 5.

    Jagannathan P , Kakuru A , 2022. Malaria in 2022: Increasing challenges, cautious optimism. Nat Commun 13: 2678.

  • 6.

    World Health Organization , 2020. World Malaria Report 2020: 20 Years of Global Progress and Challenges. Geneva, Switzerland: WHO.

  • 7.

    World Health Organization , 2019. World Malaria Report 2019. Geneva, Switzerland: WHO.

  • 8.

    Aniweh Y et al., 2023. Comparative susceptibility of Plasmodium ovale and Plasmodium falciparum field isolates to reference and lead candidate antimalarial drugs in Ghana. Microbiol Spectr 11: e0491622.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Herman C et al., 2023. Non-falciparum malaria infection and IgG seroprevalence among children under 15 years in Nigeria, 2018. Nat Commun 14: 1360.

  • 10.

    Sendor R et al., 2023. Similar prevalence of Plasmodium falciparum and non-P. falciparum malaria infections among schoolchildren, Tanzania. Emerg Infect Dis 29: 1143–1153.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Kassile T , Lokina R , Mujinja P , Mmbando BP , 2014. Determinants of delay in care seeking among children under five with fever in Dodoma region, central Tanzania: A cross-sectional study. Malar J 13: 348.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    White NJ , Watson JA , Uyongo S , Williams TN , Maitland KM , 2022. Substantial misdiagnosis of severe malaria in African children. Lancet 400: 807.

  • 13.

    Tangpukdee N , Duangdee C , Wilairatana P , Krudsood S , 2009. Malaria diagnosis: A brief review. Korean J Parasitol 47: 93–102.

  • 14.

    Wilson ML , 2012. Malaria rapid diagnostic tests. Clin Infect Dis 54: 1637–1641.

  • 15.

    Houzé S , 2017. Rapid diagnostic test for malaria. Bull Soc Pathol Exot 110: 49–54.

  • 16.

    Wanja EW , Kuya N , Moranga C , Hickman M , Johnson JD , Moseti C , Anova L , Ogutu B , Ohrt C , 2016. Field evaluation of diagnostic performance of malaria rapid diagnostic tests in western Kenya. Malar J 15: 456.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Wongsrichanalai C , Barcus MJ , Muth S , Sutamihardja A , Wernsdorfer WH , 2007. A review of malaria diagnostic tools: Microscopy and rapid diagnostic test (RDT). Am J Trop Med Hyg 77 (Suppl ):119–127.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Góes L , Chamma-Siqueira N , Peres JM , Nascimento JM , Valle S , Arcanjo AR , Lacerda M , Blume L , Póvoa M , Viana G , 2020. Evaluation of histidine-rich proteins 2 and 3 gene deletions in Plasmodium falciparum in endemic areas of the Brazilian Amazon. Int J Environ Res Public Health 18: 123.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Golassa L , Messele A , Amambua-Ngwa A , Swedberg G , 2020. High prevalence and extended deletions in Plasmodium falciparum hrp2/3 genomic loci in Ethiopia. PLoS One 15: e0241807.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Berzosa P , González V , Taravillo L , Mayor A , Romay-Barja M , García L , Ncogo P , Riloha M , Benito A , 2020. First evidence of the deletion in the pfhrp2 and pfhrp3 genes in Plasmodium falciparum from Equatorial Guinea. Malar J 19: 99.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Berzosa P et al., 2018. Comparison of three diagnostic methods (microscopy, RDT, and PCR) for the detection of malaria parasites in representative samples from Equatorial Guinea. Malar J 17: 333.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Mangold KA , Manson RU , Koay ESC , Stephens L , Regner M , Thomson RB Jr , Peterson LR , Kaul KL , 2005. Real-time PCR for detection and identification of Plasmodium spp. J Clin Microbiol 43: 2435–2440.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Dozie U , Chukwuocha UM , 2016. Comparative evaluation of malaria rapid diagnostic test kits commercially available in parts of south eastern Nigeria. J Trop Dis 4: 201.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Okoro C , Chukwuocha UM , Nwakwuo GC , Ukaga CN , 2015. Presumptive diagnosis and treatment of malaria in febrile children in parts of south eastern Nigeria. J Infect Dis Ther 3: 2332-0766.100240.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Cheesbrough M , 2005. District Laboratory Practice in Tropical Countries, 2nd edition. Cambridge, United Kingdom: Cambridge University Press.

  • 26.

    Groger M et al., 2018. Prospective clinical trial assessing species-specific efficacy of artemether-lumefantrine for the treatment of Plasmodium malariae, Plasmodium ovale, and mixed Plasmodium malaria in Gabon. Antimicrob Agents Chemother 62: e01758-17.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Woldearegai TG , Lalremruata A , Nguyen TT , Gmeiner M , Veletzky L , Tazemda-Kuitsouc GB , Matsiegui PB , Mordmüller B , Held J , 2019. Characterization of Plasmodium infections among inhabitants of rural areas in Gabon. Sci Rep 9: 9784.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Bustin SA et al., 2009. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55: 611–622.

  • 29.

    Kreidenweiss A et al., 2019. Monitoring the threatened utility of malaria rapid diagnostic tests by novel high-throughput detection of Plasmodium falciparum hrp2 and hrp3 deletions: A cross-sectional, diagnostic accuracy study. EBioMedicine 50: 14–22.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    World Health Organization , 2017. False-Negative RDT Results and Implications of New Reports of P. falciparum Histidine-Rich Protein 2/3 Gene Deletions. Geneva, Switzerland: WHO.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Addai-Mensah O et al., 2020. Plasmodium falciparum histidine-rich protein 2 diversity in Ghana. Malar J 19: 256.

  • 32.

    Nolder D et al., 2021. Failure of rapid diagnostic tests in Plasmodium falciparum malaria cases among travelers to the UK and Ireland: Identification and characterisation of the parasites. Int J Infect Dis 108: 137–144.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Ayogu EE , Ukwe CV , Nna EO , 2016. Assessing the reliability of microscopy and rapid diagnostic tests in malaria diagnosis in areas with varying parasite density among older children and adult patients in Nigeria. J Postgrad Med 62: 150–156.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Azikiwe CC , Ifezulike CC , Siminialayi IM , Amazu LU , Enye JC , Nwakwunite OE , 2012. A comparative laboratory diagnosis of malaria: Microscopy versus rapid diagnostic test kits. Asian Pac J Trop Biomed 2: 307–310.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Oboh MA , Oriero EC , Ndiaye T , Badiane AS , Ndiaye D , Amambua-Ngwa A , 2021. Comparative analysis of four malaria diagnostic tools and implications for malaria treatment in southwestern Nigeria. Int J Infect Dis 108: 377–381.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Aribodor D , Njoku OO , Eneanya CI , Onyali IO , 2003. Studies on prevalence of malaria and management practices of the Azia community, Ihiala L.G.A., Anambra State, south-east Nigeria. Niger J Parasitol 24: 33–38.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Nwaorgu O , Orajaka B , 2011. Prevalence of malaria among children 1–10 years old in communities in Awka north local government area, Anambra State Southeast Nigeria. Afr Res Rev 5: 264–281.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Krueger T et al., 2023. Low prevalence of Plasmodium falciparum histidine-rich protein 2 and 3 gene deletions: A multiregional study in Central and West Africa. Pathogens 12: 455.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Tian W , Yan P , Xu N , Chakravorty A , Liefke R , Xi Q , Wang Z , 2019. The HRP3 PWWP domain recognizes the minor groove of double-stranded DNA and recruits HRP3 to chromatin. Nucleic Acids Res 47: 5436–5448.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Tran TM et al., 2013. An intensive longitudinal cohort study of Malian children and adults reveals no evidence of acquired immunity to Plasmodium falciparum infection. Clin Infect Dis 57: 40–47.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Costa GL et al., 2021. A comprehensive analysis of the genetic diversity of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) in the Brazilian Amazon. Front Cell Infect Microbiol 11: 742681.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Koita OA et al., 2012. False-negative rapid diagnostic tests for malaria and deletion of the histidine-rich repeat region of the hrp2 gene. Am J Trop Med Hyg 86: 194–198.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Beshir KB , Sepúlveda N , Bharmal J , Robinson A , Mwanguzi J , Busula AO , de Boer JG , Sutherland C , Cunningham J , Hopkins H , 2017. Plasmodium falciparum parasites with histidine-rich protein 2 (pfhrp2) and pfhrp3 gene deletions in two endemic regions of Kenya. Sci Rep 7: 14718.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Parr JB et al., 2017. Pfhrp2-deleted Plasmodium falciparum parasites in the Democratic Republic of the Congo: A national cross-sectional survey. J Infect Dis 216: 36–44.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Berhane A , Russom M , Bahta I , Hagos F , Ghirmai M , Uqubay S , 2017. Rapid diagnostic tests failing to detect Plasmodium falciparum infections in Eritrea: An investigation of reported false negative RDT results. Malar J 16: 105.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Prosser C , Gresty K , Ellis J , Meyer W , Anderson K , Lee R , Chng Q , 2021. Plasmodium falciparum histidine-rich protein 2 and 3 gene deletions in strains from Nigeria, Sudan, and South Sudan. Emerg Infect Dis 27: 471–479.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 1275 1275 189
Full Text Views 127 127 24
PDF Downloads 82 82 5
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save