Risk Factors for Progression to Chronic Chagas Cardiomyopathy: A Systematic Review and Meta-Analysis

Melissa K. Cutshaw Department of Medicine, Duke University, Durham, North Carolina;

Search for other papers by Melissa K. Cutshaw in
Current site
Google Scholar
PubMed
Close
,
Michael Sciaudone Section of Infectious Diseases, Tulane University School of Medicine, New Orleans, Louisiana;

Search for other papers by Michael Sciaudone in
Current site
Google Scholar
PubMed
Close
, and
Natalie M. Bowman Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina

Search for other papers by Natalie M. Bowman in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT.

Approximately one-third of people with chronic Trypanosoma cruzi infection develop Chagas cardiomyopathy, which carries a poor prognosis. Accurate prediction of which individuals will go on to develop Chagas cardiomyopathy remains elusive. We performed a systematic review of literature comparing characteristics of individuals with chronic Chagas disease with or without evidence of cardiomyopathy. Studies were not excluded on the basis of language or publication date. Our review yielded a total of 311 relevant publications. We further examined the subset of 170 studies with data regarding individual age, sex, or parasite load. A meta-analysis of 106 eligible studies indicated that male sex was associated with having Chagas cardiomyopathy (Hedge’s g: 1.56, 95% CI: 1.07–2.04), and a meta-analysis of 91 eligible studies indicated that older age was associated with having Chagas cardiomyopathy (Hedge’s g: 0.66, 95% CI: 0.41–0.91). A meta-analysis of four eligible studies did not find an association between parasite load and disease state. This study provides the first systematic review to assess whether age, sex, and parasite load are associated with Chagas cardiomyopathy. Our findings suggest that older and male patients with Chagas disease are more likely to have cardiomyopathy, although we are unable to identify causal relationships due to the high heterogeneity and predominantly retrospective study designs in the current literature. Prospective, multidecade studies are needed to better characterize the clinical course of Chagas disease and identify risk factors for progression to Chagas cardiomyopathy.

    • Supplemental Materials (PDF 1,564 KB)

Author Notes

Address correspondence to Melissa K. Cutshaw, Department of Medicine, Duke University, 2301 Erwin Rd., Durham, NC 27710. E-mail: melissa.cutshaw@duke.edu

Financial support: N. B. was supported by R01 AI107028-06 and R21 AI156669. M. S. was supported by National Institutes of Health Fogarty International Center grant numbers D43TW009340 and T32AI007001.

Authors’ addresses: Melissa K. Cutshaw, Department of Medicine, Duke University, Durham, NC, E-mail: melissa.cutshaw@duke.edu. Michael Sciaudone, Section of Infectious Diseases, Tulane University School of Medicine, New Orleans, LA, E-mail: msciaudo@tulane.edu. Natalie M. Bowman, Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, E-mail: natalie_bowman@med.unc.edu.

  • 1.

    2015. Chagas disease in Latin America: an epidemiological update based on 2010 estimates. Wkly Epidemiol Rec 90: 3343.

  • 2.

    Pérez-Molina JA , Molina I , 2018. Chagas disease. Lancet 391: 8294.

  • 3.

    Lee BY , Bacon KM , Bottazzi ME , Hotez PJ , 2013. Global economic burden of Chagas disease: a computational simulation model. Lancet Infect Dis 13: 342348.

  • 4.

    Bern C , Martin DL , Gilman RH , 2011. Acute and congenital Chagas disease. Adv Parasitol 75: 1947.

  • 5.

    Nunes MCP et al., 2018. Chagas cardiomyopathy: an update of current clinical knowledge and management: a scientific statement from the American Heart Association. Circulation 138: e169e209.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Chadalawada S et al., 2020. Risk of chronic cardiomyopathy among patients with the acute phase or indeterminate form of Chagas disease: a systematic review and meta-analysis. JAMA Netw Open 3: e2015072.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Machado FS et al., 2012. Chagas heart disease: report on recent developments. Cardiology 20: 5365.

  • 8.

    Morillo CA et al., 2015. Randomized trial of benznidazole for chronic Chagas’ cardiomyopathy. N Engl J Med 373: 12951306.

  • 9.

    Page MJ et al., 2021. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372.

  • 10.

    Villar JC , Marin-Neto JA , Ebrahim S , Yusuf S , 2014. Trypanocidal drugs for chronic asymptomatic Trypanosoma cruzi infection. Cochrane Database Syst Rev 5: CD003463.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Wan X , Wang W , Liu J , Tong T , 2014. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 14: 135.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Giménez L , Mitelman J , González C , Borda E , Sterin Borda L , 2003. Anticuerpos antirreceptores autonómicos, alteraciones de la variabilidad de la frecuencia cardíaca y arritmias en sujetos con enfermedad de Chagas. Rev Argent Cardiol 71: 109113.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    González B et al., 2014. Factores de riesgo asociados con el diagnóstico de miocardiopatía chagásica crónica en individuos seropositivos del estado Barinas, Venezuela. Invest Clin 55: 119132.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Martin UO , Afchain D , Marteleur de A , Ledesma O , Capron A , 1987. Complejos inmunes circulantes en los distintos estados evolutivos de la enfermedad de Chagas. Medicina (Buenos Aires) 47: 159162.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Peverengo L , Rodeles LM , Prochetto E , Bertona D , Poato A , Cabrera G , Bontempi I , Vicco MH , Marcipar I , 2016. Presencia de anticuerpos inducidos por T. cruzi en pacientes con enfermedad de Chagas crónica y su relación con el perfil clínico. Rev Fed Arg Cardiol 45: 135139.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Pozo-Pérez A , Jorquera-Fernández A , Rodríguez-Urbaneja F , Romero-Peña L , Geraldino-Carvajal O , Cáceres-Cauro A , Rosas-Martínez M , 2014. Péptido natriurético tipo B en pacientes con enfermedad de Chagas: utilidad diagnóstica en la insuficiencia cardíaca. Invest Clin 55: 321331.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Storino R , Auger S , Caravello O , Urrutia MI , Sanmartino M , Jörg M , 2002. Cardiopatía chagásica en pacientes de área endémica versus contagiados en forma ocasional. Rev Saude Publica 36: 755758.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Peralta JM , Manigot DA , Muscelli EO , Magalhäes TC , de Almeida EA , Bastos A , 1982. Anticorpos EVI e NP na infeccao chagasica cronica: Estudo em pacientes com diferentes formas clinicas. Rev Inst Med Trop São Paulo 24: 610.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Abel LC et al., 2001. Chronic Chagas’ disease cardiomyopathy patients display an increased IFN-γ response to Trypanosoma cruzi infection. J Autoimmun 17: 99107.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Albareda MC , Laucella SA , Alvarez MG , Armenti AH , Bertochi G , Tarleton RL , Postan M , 2006. Trypanosoma cruzi modulates the profile of memory CD8+ T cells in chronic Chagas’ disease patients. Int Immunol 18: 465471.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Albareda MC , Perez-Mazliah D , Natale MA , Castro-Eiro M , Alvarez MG , Viotti R , Bertocchi G , Lococo B , Tarleton RL , Laucella SA , 2015. Perturbed T cell IL7 receptor-signaling in chronic Chagas disease. J Immunol 194: 38833889.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    de Angelis Alves RM , Thomaz RP , De Almeida EA , da Silva Wanderley J , Guariento ME , 2009. Chagas’ disease and ageing: the coexistence of other chronic diseases with Chagas’ disease in elderly patients. Rev Soc Bras Med Trop 42: 622628.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Aparecida da Silva C , Fattori A , Sousa AL , Mazon SB , Monte Alegre S , Almeida EA , Guariento ME , 2010. Determining the C-reactive protein level in patients with different clinical forms of Chagas disease. Rev Esp Cardiol 63: 10961099.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Apt W , Arribada A , Zulantay I , Saavedra M , Araya E , Solari A , Ortiz S , Arriagada K , Rodríguez J , 2015. Trypanosoma cruzi burden, genotypes, and clinical evaluation of Chilean patients with chronic Chagas cardiopathy. Parasitol Res 114: 30073018.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Apt W , Arribada A , Zulantay I , Saavedra M , Muñoz C , Toro B , Vega B , Rodríguez J , 2016. Chronic Chagas cardiopathy in Chile. Importance of Trypanosoma cruzi burden and clinical evaluation. Acta Trop 162: 155166.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Apt W , Carrasco D , Fuentealba C , Canals M , Muñoz G , Saavedra M , Castillo JP , Zulantay I , 2019. Chronic Chagas disease: quantification of Trypanosoma cruzi in peripheral blood and dejections of Triatoma infestans fed by xenodiagnosis in patients with and without cardiopathy. Acta Trop 200: 105167.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Araújo-Jorge TC , Waghabi MC , Hasslocher-Moreno AM , Xavier SS , Higuchi MdL , Keramidas M , Bailly S , Feige JJ , 2002. Implication of transforming growth factor-b1 in Chagas disease myocardiopathy. J Infect Dis 186: 18231828.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Argüello R , Albareda MC , Alvarez MG , Bertocchi G , Armenti AH , Vigliano C , Meckert PC , Tarleton RL , Laucella SA , 2012. Inhibitory receptors are expressed by Trypanosoma cruzi-specific effector T cells and in hearts of subjects with chronic Chagas disease. PLoS One 7: e35966.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Ayo CM , Reis PG , Dalalio MM , Visentainer JE , Oliveira CdF , de Araújo SM , de Oliveira Marques DS , Sell AM , 2015. Killer cell immunoglobulin-like receptors and their HLA ligands are related with the immunopathology of Chagas disease. PLoS Negl Trop Dis 9: e0003753.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Batista AM et al., 2018. Genetic polymorphism at CCL5 is associated with protection in Chagas’ heart disease: antagonistic participation of CCR1+ and CCR5+ cells in chronic chagasic cardiomyopathy. Front Immunol 9: 615.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Bautista-López NL , Morillo CA , López-Jaramillo P , Quiroz R , Luengas C , Silva SY , Galipeau J , Lalu MM , Schulz R , 2013. Matrix metalloproteinases 2 and 9 as diagnostic markers in the progression to Chagas cardiomyopathy. Am Heart J 165: 558566.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Bravo-Tobar ID , Nello-Pérez C , Fernández A , Mogollón N , Pérez MC , Verde J , Concepción JL , Rodriguez-Bonfante C , Bonfante-Cabarcas R , 2015. Adenosine deaminase activity and serum C-reactive protein as prognostic markers of Chagas disease severity. Rev Inst Med Trop São Paulo 57: 385392.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Cetron MS , Basilio FP , Moraes AP , Sousa AQ , Paes JN , Kahn SJ , Wener MH , Van Voorhis WC , 1993. Humoral and cellular immune response of adults from northeastern Brazil with chronic Trypanosoma cruzi infection: depressed cellular immune response to T. cruzi antigen among Chagas’ disease patients with symptomatic versus indeterminate infection. Am J Trop Med Hyg 49: 370382.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Chaves AT et al., 2016. Immunoregulatory mechanisms in chagas disease: modulation of apoptosis in T-cell mediated immune responses. BMC Infect Dis 16: 191.

  • 35.

    Clark EH et al., 2015. Circulating serum markers and QRS scar score in Chagas cardiomyopathy. Am J Trop Med Hyg 92: 3944.

  • 36.

    Costa GC , da Costa Rocha MO , Moreira PR , Menezes CA , Silva MR , Gollob KJ , Dutra WO , 2009. Functional IL-10 gene polymorphism is associated with Chagas disease cardiomyopathy. J Infect Dis 199: 451454.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Curvo EO , Ferreira RR , Madeira FS , Alves GF , Chambela MC , Mendes VG , Sangenis LHC , Waghabi MC , Saraiva RM , 2018. Correlation of transforming growth factor-β1 and tumour necrosis factor levels with left ventricular function in Chagas disease. Mem Inst Oswaldo Cruz 113: e170440.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Cutrullis RA , Petray PB , Schapachnik E , Sánchez R , Postan M , González MN , Martín V , Corral RS , 2013. Elevated serum levels of macrophage migration inhibitory factor are associated with progressive chronic cardiomyopathy in patients with Chagas disease. PLoS One 8: e57181.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    D’Ávila DA , Guedes PM , Castro AM , Gontijo ED , Chiari E , Galvão LM , 2009. Immunological imbalance between IFN-γ and IL-10 levels in the sera of patients with the cardiac form of Chagas disease. Mem Inst Oswaldo Cruz 104: 100105.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    D’Ávila DA , Macedo AM , Valadares HM , Gontijo ED , de Castro AM , Machado CR , Chiari E , Galvão LM , 2009. Probing population dynamics of Trypanosoma cruzi during progression of the chronic phase in chagasic patients. J Clin Microbiol 47: 17181725.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    D’Ávila DA , Galvão LMC , Sousa GR , Britto C , Moreira OC , Chiari E , 2018. Monitoring the parasite load in chronic Chagas disease patients: comparison between blood culture and quantitative real time PCR. PLoS One 13: e0208133.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    De Melo AS , de Lorena VMB , de Moura Braz SC , Docena C , de Miranda Gomes Y , 2012. IL-10 and IFN-γ gene expression in chronic Chagas disease patients after in vitro stimulation with recombinant antigens of Trypanosoma cruzi. Cytokine 58: 207212.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    De Moura Braz SC , de Melo AS , da Glória Aureliano de Melo Cavalcanti M , Martins SM , de Oliveira W Jr. , da Silva ED , Ferreira AG , de Lorena VM , de Miranda Gomes Y , 2014. Increase in the expression of CD4 + CD25+ lymphocytic T cells in the indeterminate clinical form of human Chagas disease after stimulation with recombinant antigens of Trypanosoma cruzi. J Clin Immunol 34: 991998.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Del Puerto R et al., 2010. Lineage analysis of circulating Trypanosoma cruzi parasites and their association with clinical forms of Chagas disease in Bolivia, 2010. PLoS Negl Trop Dis 4: e687.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Dias FC et al., 2013. Polymorphic sites at the immunoregulatory CTLA-4 gene are associated with chronic Chagas disease and its clinical manifestations. PLoS One 8: e78367.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Echeverría LE et al., 2020. Echocardiographic parameters, speckle tracking, and brain natriuretic peptide levels as indicators of progression of indeterminate stage to Chagas cardiomyopathy. Echocardiography 37: 429438.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Fabbro DL et al., 2011. Humoral immune response against P2β from Trypanosoma cruzi in persons with chronic Chagas disease: its relationship with treatment against parasites and myocardial damage. Am J Trop Med Hyg 84: 575580.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Faé KC , Drigo SA , Cunha-Neto E , Ianni B , Mady C , Kalil J , Goldberg AC , 2000. HLA and beta-myosin heavy chain do not influence susceptibility to Chagas disease cardiomyopathy. Microbes Infect 2: 745751.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Fares RCG et al., 2013. Matrix metalloproteinases 2 and 9 are differentially expressed in patients with indeterminate and cardiac clinical forms of Chagas disease. Infect Immun 81: 3600.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Fernandes F , Dantas S , Ianni BM , Ramires FJ , Buck P , Salemi VM , Lopes HF , Mady C , 2007. Leptin levels in different forms of Chagas’ disease. Braz J Med Biol Res 40: 16311636.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Fernández-Mestre M , Jaraquemada D , Bruno R , Caro J , Layrisse Z , 2002. Analysis of the T-cell receptor β-chain variable-region (Vβ) repertoire in chronic human Chagas’ disease. Tissue Antigens 60: 1015.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Ferreira LRP et al., 2017. Blood gene signatures of Chagas cardiomyopathy with or without ventricular dysfunction. J Infect Dis 215: 387395.

  • 53.

    Ferreira RC , Ianni MB , Abel LCJ , Buck P , Mady C , Kalil J , Cunha-Neto E , 2003. Increased plasma levels of tumor necrosis factor-alpha in asymptomatic/“indeterminate” and Chagas disease cardiomyopathy patients. Mem Inst Oswaldo Cruz 98: 407411.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Ferreira RR et al., 2018. TGF-β polymorphisms are a risk factor for Chagas disease. Dis Markers 2018: 4579198.

  • 55.

    Flórez O , Martín J , González C , 2011. Interleukin 4, interleukin 4 receptor-α and interleukin 10 gene polymorphisms in Chagas disease. Parasite Immunol 33: 506511.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Flórez O , Zafra G , Morillo C , Martín J , González CI , 2006. Interleukin-1 gene cluster polymorphism in Chagas disease in a Colombian case–control study. Hum Immunol 67: 741748.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Garcia-Alvarez A et al., 2010. Chagas cardiomyopathy: the potential of diastolic dysfunction and brain natriuretic peptide in the early identification of cardiac damage. PLoS Negl Trop Dis 4: e826.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Garg NJ et al., 2016. Changes in proteome profile of peripheral blood mononuclear cells in chronic Chagas disease. PLoS Negl Trop Dis 10: e0004490.

  • 59.

    Gasparim AZ , Fontes CER , Rossoni DF , Toledo MJdO , 2018. Epidemiological and clinical profile of patients with Chagas disease in the central-north area of Paraná, southern Brazil. Rev Soc Bras Med Trop 51: 225230.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Gazzinelli RT , Leme VMC , Cancado JR , Gazzinelli G , Scharfstein J , 1990. Identification and partial characterization of Trypanosoma cruzi antigens recognized by T cells and immune sera from patients with Chagas’ disease. Infect Immun 58: 14371444.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Gazzinelli R , Morato M , Nunes R , Cançado J , Brener Z , Gazzinelli G , 1988. Idiotype stimulation of T lymphocytes from Trypanosoma cruzi–infected patients. J Immunol 140: 31673172.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Georg I , Hasslocher-Moreno AM , Xavier SS , de Holanda MT , Roma EH , Bonecini-Almeida MdG , 2017. Evolution of anti-Trypanosoma cruzi antibody production in patients with chronic Chagas disease: correlation between antibody titers and development of cardiac disease severity. PLoS Negl Trop Dis 11: e0005796.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Giraldo NA , Bolaños NI , Cuellar A , Roa N , Cucunubá Z , Rosas F , Velasco V , Puerta CJ , González JM , 2013. T lymphocytes from chagasic patients are activated but lack proliferative capacity and down-regulate CD28 and CD3ζ. PLoS Negl Trop Dis 7: e2038.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Gomes JAS et al., 2012. Impaired phagocytic capacity driven by downregulation of major phagocytosis-related cell surface molecules elicits an overall modulatory cytokine profile in neutrophils and monocytes from the indeterminate clinical form of Chagas disease. Immunobiology 217: 10051016.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Gomes VAM et al., 2016. Analysis of regional left ventricular strain in patients with Chagas disease and normal left ventricular systolic function. J Am Soc Echocardiogr 29: 679688.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Gómez-Olarte S , Bolaños NI , Echeverry M , Rodríguez AN , Cuéllar A , Puerta CJ , Mariño A , González JM , 2019. Intermediate monocytes and cytokine production associated with severe forms of Chagas disease. Front Immunol 10: 1671.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    González F , Villar S , D'Attilio L , Leiva R , Marquez J , Lioi S , Beloscar J , Bottasso O , Perez AR , 2018. Dysregulated network of immune, endocrine and metabolic markers is associated to more severe human chronic Chagas cardiomyopathy. Neuroimmunomodulation 25: 119128.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Guedes PMM et al., 2016. Inflammation enhances the risks of stroke and death in chronic Chagas disease patients. PLoS Negl Trop Dis 10: e0004669.

  • 69.

    Gusmão RD , Rezende JM , Rassi A , Gam AA , Neva FA , 1982. Antibody levels to Trypanosoma cruzi in infected patients with and without evidence of chronic Chagas’ disease. Am J Trop Med Hyg 31: 452458.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Heringer-Walther S , Moreira MdC , Wessel N , Wang Y , Ventura TM , Schultheiss HP , Walther T , 2006. Does the C-type natriuretic peptide have prognostic value in Chagas disease and other dilated cardiomyopathies? J Cardiovasc Pharmacol 48: 293298.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    De Lourdes Higuchi M , Kawakami J , Ikegami R , Clementino MB , Kawamoto FM , Reis MM , Bocchi E , 2009. Do Archaea and bacteria co-infection have a role in the pathogenesis of chronic chagasic cardiopathy? Mem Inst Oswaldo Cruz 104 (Suppl. 1): 199207.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    De Lourdes Higuchi M et al., 2018. Archaea symbiont of T. cruzi infection may explain heart failure in Chagas disease. Front Cell Infect Microbiol 8: 412.

  • 73.

    Iosa D , DeQuattro V , Lee DDP , Elkayam U , Palmero H , 1989. Plasma norepinephrine in Chagas’ cardioneuromyopathy: a marker of progressive dysautonomia. Am Heart J 117: 882887.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Juiz NA , Estupiñán E , Hernández D , Garcilazo A , Chadi R , Morales Sanfurgo G , Schijman AG , Longhi SA , González CI , 2019. Association study between CCR2-CCR5 genes polymorphisms and chronic Chagas heart disease in Wichi and in admixed populations from Argentina. PLoS Negl Trop Dis 13: e30007033.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Kaplinski M et al., 2015. Sustained domestic vector exposure is associated with increased Chagas cardiomyopathy risk but decreased parasitemia and congenital transmission risk among young women in Bolivia. Clin Infect Dis 61: 918926.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Keating SM et al., 2015. Inflammatory and cardiac biomarkers are differentially expressed in clinical stages of Chagas disease. Int J Cardiol 199: 451459.

  • 77.

    Khan A , Wang Y , Schultheiss HP , Moreira MDCV , Walther T , 2016. Role of monokine induced by interferon gamma in discrimination and prognosis of patients with Chagas’ disease and idiopathic dilated cardiomyopathy. J Cardiovasc Pharmacol 67: 427432.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Larocca TF et al., 2017. Lack of association between serum syndecan-4, myocardial fibrosis and ventricular dysfunction in subjects with chronic Chagas disease. PLoS One 12: e0189408.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Lassen O , Tabares S , Ojeda S , Dotto G , Bertolotto P , Sembaj A , 2018. Genetic polymorphisms of manganese-dependent superoxide dismutase in Chagas disease. Infect Dis Clin Pract 26: 159164.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Lasso P , Mateus J , Pavía P , Rosas F , Roa N , Thomas MC , López MC , González JM , Puerta CJ , Cuéllar A , 2015. Inhibitory receptor expression on CD8+ T cells is linked to functional responses against Trypanosoma cruzi antigens in chronic chagasic patients. J Immunol 195: 37483758.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Laucella SA , De Titto EH , Segura EL , 1996. Epitopes common to Trypanosoma cruzi and mammalian tissues are recognized by sera from Chagas’ disease patients: prognosis value in Chagas disease. Acta Trop 62: 151162.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Laucella S , Riarte A , Prado N , Zapata J , Segura E , 2001. α4 integrins and Sialyl Lewis × modulation in chronic Chagas disease: further evidence of persistent immune activation. Scand J Immunol 53: 514519.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    Laucella S , de Titto EH , Segura EL , Orn A , Rottenberg ME , 1996. Soluble cell adhesion molecules in human Chagas’ disease: association with disease severity and stage of infection. Am J Trop Med Hyg 55: 629634.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 84.

    Leon Rodriguez D , González C , Martin J , 2016. Analysis of association of FOXO3 gene with Trypanosoma cruzi infection and chronic Chagasic cardiomyopathy. HLA 87: 449452.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    Leon Rodriguez DA , Acosta-Herrera M , Carmona FD , Dolade N , Vargas S , Echeverría LE , González CI , Martin J , 2018. Comprehensive analysis of three TYK2 gene variants in the susceptibility to Chagas disease infection and cardiomyopathy. PLoS One 13: e0190591.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Leon Rodriguez DA , Carmona FD , Echeverría LE , González CI , Martin J , 2016. IL18 gene variants influence the susceptibility to Chagas disease. PLoS Negl Trop Dis 10: e0004583.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Leon Rodriguez DA , Carmona FD , González CI , Martin J , 2016. Evaluation of VDR gene polymorphisms in Trypanosoma cruzi infection and chronic chagasic cardiomyopathy. Sci Rep 6: 31263.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    Lidani K , Sandri T , Andrade F , Bavia L , Nisihara R , Messias-Reason I , 2018. Complement Factor H as a potential atherogenic marker in chronic Chagas’ disease. Parasite Immunol 40: e12537.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Llop E , Rothhammer F , Acuña M , Apt W , 1988. HLA sntigens in cardiomyopathic Chilean chagasics. Am J Hum Genet 43: 770773.

  • 90.

    López L , Arai K , Giménez E , Jiménez M , Pascuzo C , Rodríguez-Bonfante C , Bonfante-Cabarcas R , 2006. C-reactive protein and interleukin-6 serum levels increase as Chagas disease progresses towards cardiac failure. Rev Esp Cardiol 59: 5056.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 91.

    Lorena VMB et al., 2010. Cytokine levels in serious cardiopathy of Chagas disease after in vitro stimulation with recombinant antigens from Trypanosoma cruzi. Scand J Immunol 72: 529539.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 92.

    Luz PR , Boldt ABW , Grisbach C , Kun JFJ , Velavan TP , Messias-Reason IJT , 2013. Association of L-ficolin levels and FCN2 genotypes with chronic Chagas disease. PLoS One 8: e60237.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 93.

    Luz PR , Miyazaki MI , Chiminacio Neto N , Padeski MC , Barros AC , Boldt AB , Messias-Reason IJ , 2016. Genetically determined MBL deficiency is associated with protection against chronic cardiomyopathy in Chagas disease. PLoS Negl Trop Dis 10: e0004257.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 94.

    Marques DSDO , Canesin MF , Barutta F , Fuganti CJ , Barretto ACP , 2006. Evaluation of asymptomatic patients with chronic Chagas disease through ambulatory electrocardiogram, echocardiogram and B-Type natriuretic peptide analyses. Arq Bras Cardiol 87: 336343.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 95.

    Medeiros NI et al., 2017. Differential expression of matrix metalloproteinases 2, 9 and cytokines by neutrophils and monocytes in the clinical forms of Chagas disease. PLoS Negl Trop Dis 11: e0005284.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 96.

    Medeiros NI , Pinto BF , Elói-Santos SM , Teixeira-Carvalho A , Magalhães LMD , Dutra WO , Correa-Oliveira R , Gomes JAS , 2019. Evidence of different IL-1β activation pathways in innate immune cells from indeterminate and cardiac patients with chronic Chagas disease. Front Immunol 10: 800.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 97.

    de Melo RB , Parente GBdO , Victor EG , 2005. Measurement of human brain natriuretic peptide in patients with Chagas’ disease. Arq Bras Cardiol 84: 137140.

  • 98.

    Messias-Reason I , Urbanetz L , Pereira da Cunha C , 2003. Complement C3 F and BF S allotypes are risk factors for Chagas disease cardiomyopathy. Tissue Antigens 62: 308312.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 99.

    Miranda CP , Botoni FA , Nunes MDCP , Rocha MOdC , 2019. Analysis of iron metabolism in chronic chagasic cardiomyopathy. Arq Bras Cardiol 112: 189.

  • 100.

    Moreira MdC , Heringer-Walther S , Wessel N , Moreira Ventura T , Wang Y , Schultheiss HP , Walther T , 2008. Prognostic value of natriuretic peptides in Chagas’ disease: a 3-year follow-up investigation. Cardiology 110: 217225.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 101.

    Moreira MdCV , Wang Y , Heringer-Walther S , Wessel N , Walther T , 2009. Prognostic value of natriuretic peptides in Chagas’ disease: a head-to-head comparison of the 3 natriuretic peptides. Congest Heart Fail 15: 7581.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 102.

    Mundaray Fernández N , Fernández-Mestre M , 2014. The role of haptoglobin genotypes in Chagas disease. Dis Markers 2014: 793646.

  • 103.

    Muñoz-San Martín C , Zulantay I , Saavedra M , Fuentealba C , Muñoz G , Apt W , 2018. Discrete typing units of Trypanosoma cruzi detected by real-time PCR in Chilean patients with chronic Chagas cardiomyopathy. Acta Trop 185: 280284.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 104.

    Munoz Saravia SG et al., 2013. Combined measurement of N-terminal pro-B-type natriuretic peptide and highly sensitive cardiac troponin T for diagnosis and monitoring of heart injury in chronic Chagas’ disease. Clin Biochem 46: 16151618.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 105.

    Negrão CE et al., 2009. Muscle sympathetic nerve activity in patients with Chagas’ disease. Int J Cardiol 137: 252259.

  • 106.

    Nonaka CKV et al., 2019. Circulating miRNAs as potential biomarkers associated with cardiac remodeling and fibrosis in Chagas disease cardiomyopathy. Int J Mol Sci 20: 4064.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 107.

    Noya-Rabelo MM , Macedo CT , Larocca T , Machado A , Pacheco T , Torreão J , Souza BSF , Soares MBP , Ribeiro-Dos-Santos R , Correia LCL , 2018. The presence and extension of myocardial fibrosis in the undetermined form of Chagas’ disease: a study using magnetic resonance. Arq Bras Cardiol 110: 124131.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 108.

    Noya-Rabelo MM et al., 2017. Evaluation of galectin-3 as a novel biomarker for Chagas cardiomyopathy. Cardiology 136: 3339.

  • 109.

    Nunes DF , da Matta Guedes PM , de Mesquita Andrade C , Jácome da Câmara AC , Chiari E , da Cunha Galvão LM , 2013. Troponin T autoantibodies correlate with chronic cardiomyopathy in human Chagas disease. Trop Med Int Health 18: 11801192.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 110.

    Okamoto EE et al., 2014. Biomarkers in Trypanosoma cruzi–infected and uninfected individuals with varying severity of cardiomyopathy in Santa Cruz, Bolivia. PLoS Negl Trop Dis 8: e3362.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 111.

    Peralta J , Ginefra P , Dias J , Magalhães J , Szarfman A , 1981. Autoantibodies and chronic Chagas’s heart disease. Trans R Soc Trop Med Hyg 75: 568569.

  • 112.

    Pérez AR , Silva-Barbosa SD , Berbert LR , Revelli S , Beloscar J , Savino W , Bottasso O , 2011. Immunoneuroendocrine alterations in patients with progressive forms of chronic Chagas disease. J Neuroimmunol 235: 8490.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 113.

    Pérez-Fuentes R , López-Colombo A , Ordóñez-Toquero G , Gomez-Albino I , Ramos J , Torres-Rasgado E , Salgado-Rosas H , Romero-Díaz M , Pulido-Pérez P , Sánchez-Guillén MC , 2007. Correlation of the serum concentrations of tumour necrosis factor and nitric oxide with disease severity in chronic Chagas disease (American trypanosomiasis). Ann Trop Med Parasitol 101: 123132.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 114.

    Pérez-Mazliah DE , Castro Eiro MD , Álvarez MG , Lococo B , Bertocchi G , César G , Natale MA , Albareda MC , Viotti R , Laucella SA , 2018. Distinct monocyte subset phenotypes in patients with different clinical forms of chronic Chagas disease and seronegative dilated cardiomyopathy. PLoS Negl Trop Dis 12: e0006887.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 115.

    Perez-Ramirez L et al., 1999. Clinical analysis and parasite genetic diversity in human immunodeficiency virus/Chagas’ disease coinfections in Brazil. Am J Trop Med Hyg 61: 198206.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 116.

    Pissetti CW , De Oliveira RF , Correira D , Nascentes GAN , Llaguno MM , Rodrigues V , 2013. Association between the lymphotoxin-alpha gene polymorphism and chagasic cardiopathy. J Interferon Cytokine Res 33: 130135.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 117.

    Puyó AM , Scaglione J , Auger S , Cavallero S , Donoso AS , Dupuy HA , Fernández BE , 2002. Atrial natriuretic factor as marker of myocardial compromise in Chagas’ disease. Regul Pept 105: 139143.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 118.

    Ramasawmy R , Cunha-Neto E , Fae KC , Borba SC , Teixeira PC , Ferreira SC , Goldberg AC , Ianni B , Mady C , Kalil J , 2009. Heterozygosity for the S180L variant of MAL/TIRAP, a gene expressing an adaptor protein in the toll‐like receptor pathway, is associated with lower risk of developing chronic Chagas cardiomyopathy. J Infect Dis 199: 18381845.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 119.

    Ramasawmy R , Cunha-Neto E , Faé KC , Müller NG , Cavalcanti VL , Drigo SA , Ianni B , Mady C , Kalil J , Goldberg AC , 2006. BAT1, a putative anti-inflammatory gene, is associated with chronic Chagas cardiomyopathy. J Infect Dis 193: 13941399.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 120.

    Ramasawmy R , Cunha-Neto E , Fae KC , Martello FG , Müller NG , Cavalcanti VL , Ianni B , Mady C , Kalil J , Goldberg AC , 2006. The monocyte chemoattractant protein–1 gene polymorphism is associated with cardiomyopathy in human Chagas disease. Clin Infect Dis 43: 305311.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 121.

    Ramasawmy R et al., 2007. Polymorphisms in the gene for lymphotoxin-α predispose to chronic Chagas cardiomyopathy. J Infect Dis 196: 18361843.

  • 122.

    Reis PG et al., 2017. Genetic polymorphisms of IL17 and Chagas disease in the south and southeast of Brazil. J Immunol Res 2017: 1017621.

  • 123.

    Ripoll JG , Giraldo NA , Bolaños NI , Roa N , Rosas F , Cuéllar A , Puerta CJ , González JM , 2018. T cells responding to Trypanosoma cruzi detected by membrane TNF-α and CD154 in chagasic patients. Immun Inflamm Dis 6: 4757.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 124.

    Rocha AL , Lombardi F , da Costa Rocha MO , Barros MV , Val Barros VdC , Reis AM , Ribeiro AL , 2006. Chronotropic incompetence and abnormal autonomic modulation in ambulatory Chagas disease patients. Ann Noninvasive Electrocardiol 11: 311.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 125.

    Rocha SC , Pérez AR , Beloscar J , Bottasso O , Silber AM , 2019. Diminished prolinemia in chronic Chagasic patients: a new clue for disease pathology? Mol 24: 3167.

  • 126.

    Rodeles LM , Vicco MH , Bontempi IA , Siano A , Tonarelli G , Bottasso OA , Arias P , Marcipar IS , 2016. Combined analysis of cross-reacting antibodies anti-β1AR and anti-B13 in advanced stages of Chagas heart disease. Trop Med Int Health 21: 15451551.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 127.

    Salomone OA , Caeiro TF , Madoery RJ , Amuchástegui M , Omelinauk M , Juri D , Kaski JC , 2001. High plasma immunoreactive endothelin levels in patients with Chagas’ cardiomyopathy. Am J Cardiol 87: 12171220.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 128.

    Sánchez-Montalvá A , Salvador F , Rodríguez-Palomares J , Sulleiro E , Sao-Avilés A , Roure S , Valerio L , Evangelista A , Molina I , 2016. Chagas cardiomyopathy: usefulness of EKG and echocardiogram in a non-endemic country. PLoS One 11: e0157597.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 129.

    Sandri TL , Andrade FA , Lidani KCF , Einig E , Boldt ABW , Mordmüller B , Esen M , Messias-Reason IJ , 2019. Human collectin-11 (COLEC11) and its synergic genetic interaction with MASP2 are associated with the pathophysiology of Chagas disease. PLoS Negl Trop Dis 13: e0007324.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 130.

    Santos LdS , Torres RM , Machado-de-Assis GF , Bahia MT , Martins HR , Teixeira-Carvalho A , Coelho-Dos-Reis JG , Albajar-Viñas P , Martins-Filho OA , Lana Md , 2012. In-house ELISA method to analyze anti-Trypanosoma cruzi IgG reactivity for differential diagnosis and evaluation of Chagas disease morbidity. Rev Soc Bras Med Trop 45: 3544.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 131.

    Saravia SGM , Haberland A , Bartel S , Araujo R , Valda G , Reynaga DD , Ramirez ID , Borges AC , Wallukat G , Schimke I , 2011. Cardiac troponin T measured with a highly sensitive assay for diagnosis and monitoring of heart injury in chronic Chagas disease. Arch Pathol Lab Med 135: 243248.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 132.

    Schapachnik ES , Ramos AO , Reitburd CR , Maceri C , 1980. Enfermedad de Chagas crónica: correlación radiológica y electrocardiográfica. Rev Argent Cardiol 48: 256263.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 133.

    Silva SJ , Rassi S , Pereira AdC , 2017. Angiotensin-converting enzyme ID polymorphism in patients with heart failure secondary to Chagas disease. Arq Bras Cardiol 109: 307.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 134.

    Silva SDA , Gontijo ED , Amaral CFS , 2007. Case–control study of factors associated with chronic Chagas heart disease in patients over 50 years of age. Mem Inst Oswaldo Cruz 102: 845851.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 135.

    Simões MV , Pintya AO , Bromberg-Marin G , Sarabanda AV , Antloga CM , Pazin-Filho A , Maciel BC , Marin-Neto JA , 2000. Relation of regional sympathetic denervation and myocardial perfusion disturbance to wall motion impairment in Chagas’ cardiomyopathy. Am J Cardiol 86: 975981.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 136.

    de Araújo Soares AK , Neves PA , Cavalcanti MD , Marinho SM , Oliveira W Jr. , Souza JR , Lorena VM , Gomes YM , 2016. Expression of co-stimulatory molecules CD80 and CD86 is altered in CD14 + HLA-DR + monocytes from patients with Chagas disease following induction by Trypanosoma cruzi recombinant antigens. Rev Soc Bras Med Trop 49: 632636.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 137.

    Sousa GR , Gomes JA , Damasio MP , Nunes MC , Costa HS , Medeiros NI , Fares RC , Chaves AT , Corrêa-Oliveira R , Rocha MO , 2017. The role of interleukin 17-mediated immune response in Chagas disease: high level is correlated with better left ventricular function. PLoS One 12: e0172833.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 138.

    Sousa GR et al., 2014. Plasma cytokine expression is associated with cardiac morbidity in Chagas disease. PLoS One 9: e87082.

  • 139.

    Strauss M , Acosta-Herrera M , Alcaraz A , Casares-Marfil D , Bosch-Nicolau P , Lo Presti MS , Molina I , González CI , Martín J , 2019. Association of IL18 genetic polymorphisms with Chagas disease in Latin American populations. PLoS Negl Trop Dis 13: e0007859.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 140.

    Szarfman A , Luquetti A , Rassi A , Rezende JM , Schmuñis GA , 1981. Tissue-reacting immunoglobulins in patients with different clinical forms of Chagas’ disease. Am J Trop Med Hyg 30: 4346.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 141.

    Talvani A , Rocha MOC , Ribeiro AL , Borda E , Sterin-Borda L , Teixeira MM , 2006. Levels of anti-M2 and anti-beta1 autoantibodies do not correlate with the degree of heart dysfunction in Chagas’ heart disease. Microbes Infect 8: 24592464.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 142.

    Thomas MC , Fernández-Villegas A , Carrilero B , Marañón C , Saura D , Noya O , Segovia M , Alarcón de Noya B , Alonso C , López MC , 2012. Characterization of an immunodominant antigenic epitope from Trypanosoma cruzi as a biomarker of chronic Chagas’ disease pathology. Clin Vaccine Immunol 19: 167173.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 143.

    Torreão JA et al., 2015. Myocardial tissue characterization in Chagas’ heart disease by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 17: 97.

  • 144.

    Torres OA , Calzada JE , Beraún Y , Morillo CA , González A , González CI , Martín J , 2010. Role of the IFNG +874T/A polymorphism in Chagas disease in a Colombian population. Infect Genet Evol 10: 682685.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 145.

    Uellendahl M , Siqueira ME , Calado EB , Kalil-Filho R , Sobral D , Ribeiro C , Oliveira W , Martins S , Narula J , Rochitte CE , 2016. Cardiac magnetic resonance-verified myocardial fibrosis in Chagas disease: clinical correlates and risk stratification. Arq Bras Cardiol 107: 460.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 146.

    Valerio L , Roure S , Sabrià M , Balanzó X , Vallès X , Serés L , 2011. Clinical, electrocardiographic and echocardiographic abnormalities in Latin American migrants with newly diagnosed Chagas disease 2005–2009, Barcelona, Spain. Euro Surveill 16: 19971.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 147.

    Vasconcelos DF , Junqueira LF , 2009. Distinctive impaired cardiac autonomic modulation of heart rate variability in chronic Chagas’ indeterminate and heart diseases. J Electrocardiol 42: 281289.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 148.

    Vasconcelos RHT , Azevedo EdA , Diniz GT , Cavalcanti MdG , de Oliveira W Jr. , de Morais CN , Gomes Yd M , 2015. Interleukin-10 and tumour necrosis factor-alpha serum levels in chronic Chagas disease patients. Parasite Immunol 37: 376379.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 149.

    Venegas J et al., 2009. Differential distribution of Trypanosoma cruzi clones in human chronic chagasic cardiopathic and non-cardiopathic individuals. Acta Trop 109: 187193.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 150.

    VerçoSsa AFA , Lorena VMB , Carvalho CL , Melo MFAD , Cavalcanti MGA , Silva ED , Ferreira AGP , Pereira VRA , Souza WV , Gomes YM , 2007. Chagas’ disease: IgG isotypes against cytoplasmic (CRA) and flagellar (FRA) recombinant repetitive antigens of Trypanosoma cruzi in chronic chagasic patients. J Clin Lab Anal 21: 271276.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 151.

    Vicco MH , Bontempi IA , Rodeles L , Yodice A , Marcipar IS , Bottasso O , 2014. Decreased level of antibodies and cardiac involvement in patients with chronic Chagas heart disease vaccinated with BCG. Med Microbiol Immunol (Berl) 203: 133139.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 152.

    Vicco MH et al., 2013. Assessment of cross-reactive host-pathogen antibodies in patients with different stages of chronic Chagas disease. Rev Esp Cardiol 66: 791796.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 153.

    Villacorta H , Bortolotto LA , Arteaga E , Mady C , 2006. Aortic distensibility measured by pulse-wave velocity is not modified in patients with Chagas’ disease. J Negat Results Biomed 5: 9.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 154.

    Villar JC , León H , Morillo CA , 2004. Cardiovascular autonomic function testing in asymptomatic T. cruzi carriers: a sensitive method to identify subclinical Chagas’ disease. Int J Cardiol 93: 189195.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 155.

    Viotti R et al., 2009. The impact of socioeconomic conditions on chronic Chagas disease progression. Rev Esp Cardiol 62: 12241232.

  • 156.

    Vitelli-Avelar DM et al., 2008. Strategy to assess the overall cytokine profile of circulating leukocytes and its association with distinct clinical forms of human Chagas disease. Scand J Immunol 68: 516525.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 157.

    Vizzoni AG , Varela MC , Sangenis LHC , Hasslocher-Moreno AM , Do Brasil PEAA , Saraiva RM , 2018. Ageing with Chagas disease: an overview of an urban Brazilian cohort in Rio de Janeiro. Parasit Vectors 11: 18.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 158.

    Volpato FCZ , Sousa GR , D’Ávila DA , Galvão LMdC , Chiari E , 2017. Combined parasitological and molecular-based diagnostic tools improve the detection of Trypanosoma cruzi in single peripheral blood samples from patients with Chagas disease. Rev Soc Bras Med Trop 50: 506515.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 159.

    Wallukat G et al., 2010. Distinct patterns of autoantibodies against G-protein-coupled receptors in Chagas’ cardiomyopathy and megacolon. Their potential impact for early risk assessment in asymptomatic Chagas’ patients. J Am Coll Cardiol 55: 463468.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 160.

    Wang Y , Khan A , Heringer-Walther S , Schultheiss H-P , Moreira MdCV , Walther T , 2013. Prognostic value of circulating levels of stem cell growth factor beta (SCGF beta) in patients with Chagas’ disease and idiopathic dilated cardiomyopathy. Cytokine 61: 728731.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 161.

    Wang Y , Moreira MdC , Heringer-Walther S , Ebermann L , Schultheiss HP , Wessel N , Siems WE , Walther T , 2010. Plasma ACE2 activity is an independent prognostic marker in Chagas’ disease and equally potent as BNP. J Card Fail 16: 157163.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 162.

    Wang Y , Moreira MdC , Heringer-Walther S , Khan A , Schultheiss HP , Wessel N , Siems WE , Walther T , 2011. Does the aminopeptidase a have prognostic and diagnostic value in Chagas disease and other dilated cardiomyopathies? J Cardiovasc Pharmacol 58: 374379.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 163.

    Wang Y , Moreira MdC , Heringer-Walther S , Schultheiss HP , Siems WE , Wessel N , Walther T , 2010. Amino-terminal fragment of C-type natriuretic peptide precursor and C-type natriuretic peptide do not correlate in patients with Chagas disease: role for neutral endopeptidase. J Cardiovasc Pharmacol 55: 6266.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 164.

    Wang Y , Moreira MdC , Khan A , Heringer-Walther S , Schultheiss HP , Wessel N , Siems WE , Walther T , 2012. Prognostic significance of circulating levels of hepatocyte growth factor in patients with Chagas’ disease and idiopathic dilated cardiomyopathy. Cardiology 121: 240246.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 165.

    Ward LS , Guariento ME , Fernandes GA , Maciel RM , 1999. Serum cytokines in chronic Chagas’ disease. Rev Soc Bras Med Trop 32: 285289.

  • 166.

    Zafra G , Flórez O , Morillo CA , Echeverría LE , Martín J , González CI , 2008. Polymorphisms of toll-like receptor 2 and 4 genes in Chagas disease. Mem Inst Oswaldo Cruz 103: 2730.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 167.

    Zafra G , Morillo C , Martín J , González A , González CI , 2007. Polymorphism in the 30 UTR of the IL12B gene is associated with Chagas’ disease cardiomyopathy. Microbes Infect 9: 10491052.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 168.

    Zago MP et al., 2019. Potential utility of protein targets of cysteine-S-nitrosylation in identifying clinical disease status in human Chagas disease. Front Microbiol 9: 3320.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 169.

    Grotto HZW , Costa FF , Carnéiro MV , Neto GCG , 1994. Serum neopterin in patients with Chagas disease. Trans R Soc Trop Med Hyg 88: 75.

  • 170.

    Zicker F , Netto JCDA , Zicker EMS , Oliveira RM , Smith PG , 1990. Trypanosoma cruzi infection and electrocardiographic findings among active manual workers. A population-based study in central Brazil. Int J Epidemiol 19: 182186.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 171.

    Zicker F , Smith PG , Almeida Netto JC , Oliveira RM , Zicker EMS , 1990. Physical activity, opportunity for reinfection, and sibling history of heart disease as risk factors for Chagas’ cardiomyopathy. Am J Trop Med Hyg 43: 498505.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 172.

    Mosca W , Castes M , Ojeda A , El Homsi A , 1986. Evaluation of the interaction of leucocytes from Chagas disease patients with trypomastigotes of Trypanosoma cruzi. Trans R Soc Trop Med Hyg 80: 975977.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 173.

    Nunes MCP , Dones W , Morillo CA , Encina JJ , Ribeiro AL , 2013. Chagas disease: an overview of clinical and epidemiological aspects. J Am Coll Cardiol 62: 767776.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 174.

    Pereira NdS , Queiroga TBD , Nunes DF , Andrade CM , Nascimento MSL , Do-Valle-Matta MA , da Câmara ACJ , Galvão LMDC , Guedes PMM , Chiari E , 2018. Innate immune receptors over expression correlate with chronic chagasic cardiomyopathy and digestive damage in patients. PLoS Negl Trop Dis 12: e0006589.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 175.

    Rocha ALL , Lombardi F , da Costa Rocha MO , Barros MV , Val Barros VdC , Reis AM , Ribeiro AL , 2006. Chronotropic incompetence and abnormal autonomic modulation in ambulatory Chagas disease patients. Ann Noninvasive Electrocardiol 11: 311.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 176.

    Almeida M , Lorena VMB , Medeiros CA , Junior WO , Cavalcanti MDGAM , Martins SM , de Morais CNL , 2018. Alternative Th17 and CD4+ CD25+ FoxP3+ cell frequencies increase and correlate with worse cardiac function in Chagas cardiomyopathy. Scand J Immunol 87: e12650.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 177.

    Faé KC , Drigo SA , Cunha-Neto E , Ianni B , Mady C , Kalil J , Goldberg AC , 2000. HLA and β-myosin heavy chain do not influence susceptibility to Chagas’ disease cardiomyopathy. Microbes Infect 2: 745751.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 178.

    Frade AF et al., 2013. Genetic susceptibility to Chagas disease cardiomyopathy: involvement of several genes of the innate immunity and chemokine-dependent migration pathways. BMC Infect Dis 13: 587.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 179.

    Frade AF et al., 2013. Polymorphism in the alpha cardiac muscle actin 1 gene is associated to susceptibility to chronic inflammatory cardiomyopathy. PLoS One 8: e83446.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 180.

    Gomes JdAS et al., 2018. Systems biology reveals relevant gaps in Fc-γR expression, impaired regulatory cytokine microenvironment interfaced with anti–Trypanosoma cruzi IgG reactivity in cardiac Chagas disease patients. Front Microbiol 9: 1608.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 181.

    Passos LSA , Magalhães LMD , Soares RP , Marques AF , Alves MLR , Giunchetti RC , Nunes MDCP , Gollob KJ , Dutra WO , 2019. Activation of human CD11b+ B1 B-cells by Trypanosoma cruzi-derived proteins is associated with protective immune response in human Chagas disease. Front Immunol 9: 3015.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 182.

    Passos L , Magalhães LMD , Soares RP , Marques AF , Nunes MDCP , Gollob KJ , Dutra WO , 2017. Specific activation of CD4-CD8- double-negative T cells by Trypanosoma cruzi-derived glycolipids induces a proinflammatory profile associated with cardiomyopathy in Chagas patients. Clin Exp Immunol 190: 122132.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 183.

    Ribeiro AL , Nunes MP , Teixeira MM , Rocha MOC , 2012. Diagnosis and management of Chagas disease and cardiomyopathy. Nat Rev Cardiol 9: 576589.

  • 184.

    Leening MJ et al., 2014. Sex differences in lifetime risk and first manifestation of cardiovascular disease: prospective population based cohort study. BMJ 349: g5992.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 185.

    Pereira SS , Trindade S , De Niz M , Figueiredo LM , 2019. Tissue tropism in parasitic diseases. Open Biol 9: 190036.

  • 186.

    Marin-Neto JA , Cunha-Neto E , Maciel BC , Simões MV , 2007. Pathogenesis of chronic Chagas heart disease. Circulation 115: 11091123.

  • 187.

    Brenière SF , Waleckx E , Barnabé C , 2016. Over six thousand Trypanosoma cruzi strains classified into discrete typing units (DTUs): attempt at an inventory. PLoS Negl Trop Dis 10: e0004792.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 188.

    Nielebock MAP , Moreira OC , Xavier SCDC , Miranda LFC , Lima ACB , Pereira TOJS , Hasslocher-Moreno AM , Britto C , Sangenis LHC , Saraiva RM , 2020. Association between Trypanosoma cruzi DTU TcII and chronic Chagas disease clinical presentation and outcome in an urban cohort in Brazil. PLoS One 15: e0243008.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 189.

    Rodrigues-dos-Santos Í , Melo MF , de Castro L , Hasslocher-Moreno AM , do Brasil PEAA , Silvestre de Sousa A , Britto C , Moreira OC , 2018. Exploring the parasite load and molecular diversity of Trypanosoma cruzi in patients with chronic Chagas disease from different regions of Brazil. PLoS Negl Trop Dis 12: e0006939.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 190.

    Sabino EC et al., 2015. Detection of Trypanosoma cruzi DNA in blood by PCR is associated with Chagas cardiomyopathy and disease severity. Eur J Heart Fail 17: 416423.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 1520 889 72
Full Text Views 364 149 1
PDF Downloads 242 29 2
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save