Opisthorchis viverrini Infection Augments the Severity of Nonalcoholic Fatty Liver Disease in High-Fat/High-Fructose Diet–Fed Hamsters

Apisit Chaidee Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand;
Chronic Kidney Disease Prevention in The Northeast of Thailand (CKDNET) Working Group, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand;

Search for other papers by Apisit Chaidee in
Current site
Google Scholar
PubMed
Close
,
Sudarat Onsurathum Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand;
Chronic Kidney Disease Prevention in The Northeast of Thailand (CKDNET) Working Group, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand;

Search for other papers by Sudarat Onsurathum in
Current site
Google Scholar
PubMed
Close
,
Kitti Intuyod Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand;
Chronic Kidney Disease Prevention in The Northeast of Thailand (CKDNET) Working Group, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand;

Search for other papers by Kitti Intuyod in
Current site
Google Scholar
PubMed
Close
,
Ornuma Haonon Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand;
Chronic Kidney Disease Prevention in The Northeast of Thailand (CKDNET) Working Group, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand;

Search for other papers by Ornuma Haonon in
Current site
Google Scholar
PubMed
Close
,
Patchareewan Pannangpetch Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand;

Search for other papers by Patchareewan Pannangpetch in
Current site
Google Scholar
PubMed
Close
,
Chatlert Pongchaiyakul Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand;

Search for other papers by Chatlert Pongchaiyakul in
Current site
Google Scholar
PubMed
Close
,
Porntip Pinlaor Chronic Kidney Disease Prevention in The Northeast of Thailand (CKDNET) Working Group, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand;
Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand;

Search for other papers by Porntip Pinlaor in
Current site
Google Scholar
PubMed
Close
,
Chawalit Pairojkul Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand;

Search for other papers by Chawalit Pairojkul in
Current site
Google Scholar
PubMed
Close
,
Jariya Umka Welbat Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand;

Search for other papers by Jariya Umka Welbat in
Current site
Google Scholar
PubMed
Close
,
Wannaporn Ittiprasert Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia

Search for other papers by Wannaporn Ittiprasert in
Current site
Google Scholar
PubMed
Close
,
Christina J. Cochran Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia

Search for other papers by Christina J. Cochran in
Current site
Google Scholar
PubMed
Close
,
Victoria H. Mann Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia

Search for other papers by Victoria H. Mann in
Current site
Google Scholar
PubMed
Close
,
Paul J. Brindley Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia

Search for other papers by Paul J. Brindley in
Current site
Google Scholar
PubMed
Close
, and
Somchai Pinlaor Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand;
Chronic Kidney Disease Prevention in The Northeast of Thailand (CKDNET) Working Group, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand;

Search for other papers by Somchai Pinlaor in
Current site
Google Scholar
PubMed
Close
Restricted access

The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing worldwide, including in regions where helminth infections such as the fish-borne liver fluke Opisthorchis viverrini (Ov) also occur. We investigated the effects of a high-fat and high-fructose (HFF) diet on the development and progression of NAFLD in experimental opisthorchiasis. Two groups of hamsters were infected with Ov for 4 months before the experiment to induce chronic inflammation. One of these groups (OvHFF) was fed with a HFF diet for up to further 4 months. One uninfected group of hamsters served as the normal control group, and another received the HFF diet (HFF group) for up to 4 months. Histopathology, biochemical parameters, and ultrastructural features of liver were investigated. In a short-term treatment, the OvHFF group showed significantly better homeostatic model assessment for insulin resistance level and lower liver lipid than did the HFF group. By contrast, histopathological characteristics of severe NAFLD were prominent in the OvHFF group after 4 months on the HFF diet, findings which were supported by confirmatory ultrastructural changes. In conclusion, opisthorchiasis induced the severe NAFLD in hamsters fed high-fat/high-fructose diets.

    • Supplemental Materials (MS Word 16 KB)

Author Notes

Address correspondence to Somchai Pinlaor, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 4002, Thailand. E-mail: psomec@kku.ac.th

Financial support: The Thailand Research Fund (RSA5780046) (S. P.) supported this project. A. C. is a graduate student supported by the Faculty of Medicine, Khon Kaen University, Ph.D.-M.D. Program, and the Thailand Research Fund and Khon Kaen University through the Royal Golden Jubilee Ph.D. Program (grant number PHD/0011/2555) (to A. C. and S. P.) and Invitation Research Fund and Research assistant, the Faculty of Medicine, Khon Kaen University, Thailand (IN59158).

Authors’ addresses: Apisit Chaidee, Sudarat Onsurathum, Kitti Intuyod, Ornuma Haonon, and Somchai Pinlaor, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand, E-mails: apisit.chaidee@gmail.com, onsurathum.s@gmail.com, kitti.i@kkumail.com, ornuma_hao@kkumail.com, and psomec@kku.ac.th. Patchareewan Pannangpetch, Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand, E-mail: patc_pan@kku.ac.th. Chatlert Pongchaiyakul, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand, E-mail: pchatl@kku.ac.th. Porntip Pinlaor, Center for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand, E-mail: porawa@kku.ac.th. Chawalit Pairojkul, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand, E-mail: chawalit.pjk2011@gmail.com. Jariya Umka Welbat, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand, E-mail: jariya_umka@yahoo.com. Wannaporn Ittiprasert, Christina J. Cochran, Victoria H. Mann, and Paul J. Brindley, Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, The George Washington University, Washington, DC, E-mails: wannaporni@gwu.edu, tinajcochran@hotmail.com, vmann@gwu.edu, and pbrindley@gwu.edu.

  • 1.

    Sithithaworn P, Andrews RH, Nguyen VD, Wongsaroj T, Sinuon M, Odermatt P, Nawa Y, Liang S, Brindley PJ, Sripa B, 2012. The current status of opisthorchiasis and clonorchiasis in the Mekong basin. Parasitol Int 61: 1016.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Jittimanee J, Sermswan RW, Puapairoj A, Maleewong W, Wongratanacheewin S, 2007. Cytokine expression in hamsters experimentally infected with Opisthorchis viverrini. Parasite Immunol 29: 159167.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Prakobwong S, Pinlaor S, Yongvanit P, Sithithaworn P, Pairojkul C, Hiraku Y, 2009. Time profiles of the expression of metalloproteinases, tissue inhibitors of metalloproteases, cytokines and collagens in hamsters infected with Opisthorchis viverrini with special reference to peribiliary fibrosis and liver injury. Int J Parasitol 39: 825835.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Yongvanit P, Pinlaor S, Bartsch H, 2012. Oxidative and nitrative DNA damage: key events in opisthorchiasis-induced carcinogenesis. Parasitol Int 61: 130135.

  • 5.

    IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2012. Biological agents. Volume 100 B. A review of human carcinogens. IARC Monogr Eval Carcinog Risks Hum 100: 1441.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Laothong U, Pinlaor P, Boonsiri P, Hiraku Y, Khoontawad J, Hongsrichan N, Charoensuk L, Pinlaor S, 2013. α-Tocopherol and lipid profiles in plasma and the expression of alpha-tocopherol-related molecules in the liver of Opisthorchis viverrini-infected hamsters. Parasitol Int 62: 127133.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Adam R, Hinz E, Sithithaworn P, Pipitgool V, Storch V, 1993. Ultrastructural hepatic alterations in hamsters and jirds after experimental infection with the liver fluke Opisthorchis viverrini. Parasitol Res 79: 357364.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Laothong U, Pinlaor P, Boonsiri P, Pairojkul C, Priprem A, Johns NP, Charoensuk L, Intuyod K, Pinlaor S, 2013. Melatonin inhibits cholangiocarcinoma and reduces liver injury in Opisthorchis viverrini-infected and N-nitrosodimethylamine-treated hamsters. J Pineal Res 55: 257266.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Chaidee A et al. 2018. Co-occurrence of opisthorchiasis and diabetes exacerbates morbidity of the hepatobiliary tract disease. Plos Negl Trop Dis 12: e0006611.

  • 10.

    Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, Charlton M, Sanyal AJ; American Gastroenterological Association, American Association for the Study of Liver Diseases, American College of Gastroenterologyh, 2012. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology 142: 15921609.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Rinella ME, 2015. Nonalcoholic fatty liver disease: a systematic review. JAMA 313: 22632273.

  • 12.

    Williams CD, Stengel J, Asike MI, Torres DM, Shaw J, Contreras M, Landt CL, Harrison SA, 2011. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 140: 124131.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Birkenfeld AL, Shulman GI, 2014. Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology 59: 713723.

  • 14.

    Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M, 2016. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64: 7384.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J, Bugianesi E, 2018. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 15: 1120.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Tacke F, Yoneyama H, 2013. From NAFLD to NASH to fibrosis to HCC: role of dendritic cell populations in the liver. Hepatology 58: 494496.

  • 17.

    Chen Y, Yousaf MN, Mehal WZ, 2018. Role of sterile inflammation in fatty liver diseases. Liver Res 2: 2129.

  • 18.

    Ganz M, Bukong TN, Csak T, Saha B, Park JK, Ambade A, Kodys K, Szabo G, 2015. Progression of non-alcoholic steatosis to steatohepatitis and fibrosis parallels cumulative accumulation of danger signals that promote inflammation and liver tumors in a high fat-cholesterol-sugar diet model in mice. J Transl Med 13: 193.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Angulo P et al. 2015. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 149: 389397 e10.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Kanwal F et al. 2018. Risk of hepatocellular cancer in patients with non-alcoholic fatty liver disease. Gastroenterology 155: 18281837 e2.

  • 21.

    Wongjarupong N, Assavapongpaiboon B, Susantitaphong P, Cheungpasitporn W, Treeprasertsuk S, Rerknimitr R, Chaiteerakij R, 2017. Non-alcoholic fatty liver disease as a risk factor for cholangiocarcinoma: a systematic review and meta-analysis. BMC Gastroenterol 17: 149.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kinoshita M, Kubo S, Tanaka S, Takemura S, Nishioka T, Hamano G, Ito T, Tanaka S, Ohsawa M, Shibata T, 2016. The association between non-alcoholic steatohepatitis and intrahepatic cholangiocarcinoma: a hospital based case-control study. J Surg Oncol 113: 779783.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Aekplakorn W, Satheannoppakao W, Putwatana P, Taneepanichskul S, Kessomboon P, Chongsuvivatwong V, Chariyalertsak S, 2015. Dietary pattern and metabolic syndrome in Thai adults. J Nutr Metab 2015: 468759.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Thinkhamrop K, Khuntikeo N, Phonjitt P, Chamadol N, Thinkhamrop B, Moore MA, Promthet S, 2015. Association between diabetes mellitus and fatty liver based on ultrasonography screening in the world’s highest cholangiocarcinoma incidence region, northeast Thailand. Asian Pac J Cancer Prev 16: 39313936.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Sripa B, Bethony JM, Sithithaworn P, Kaewkes S, Mairiang E, Loukas A, Mulvenna J, Laha T, Hotez PJ, Brindley PJ, 2011. Opisthorchiasis and opisthorchis-associated cholangiocarcinoma in Thailand and Laos. Acta Trop 120 (Suppl 1): S158S168.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Mairiang E, Laha T, Bethony JM, Thinkhamrop B, Kaewkes S, Sithithaworn P, Tesana S, Loukas A, Brindley PJ, Sripa B, 2012. Ultrasonography assessment of hepatobiliary abnormalities in 3359 subjects with Opisthorchis viverrini infection in endemic areas of Thailand. Parasitol Int 61: 208211.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Charoensuk L, Pinlaor P, Laothong U, Yongvanit P, Pairojkul C, Nawa Y, Pinlaor S, 2014. Bile canalicular changes and defective bile secretion in Opisthorchis viverrini-infected hamsters. Folia Parasitol (Praha) 61: 512522.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Hongsrichan N, Intuyod K, Pinlaor P, Khoontawad J, Yongvanit P, Wongkham C, Roytrakul S, Pinlaor S, 2014. Cytokine/chemokine secretion and proteomic identification of upregulated annexin A1 from peripheral blood mononuclear cells cocultured with the liver fluke Opisthorchis viverrini. Infect Immun 82: 21352147.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Lvova MN, Tangkawattana S, Balthaisong S, Katokhin AV, Mordvinov VA, Sripa B, 2012. Comparative histopathology of Opisthorchis felineus and Opisthorchis viverrini in a hamster model: an implication of high pathogenicity of the European liver fluke. Parasitol Int 61: 167172.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Sithithaworn P, Pipitgool V, Srisawangwong T, Elkins DB, Haswell-Elkins MR, 1997. Seasonal variation of Opisthorchis viverrini infection in cyprinoid fish in north-east Thailand: implications for parasite control and food safety. Bull World Health Organ 75: 125131.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Morris JL, Bridson TL, Alim MA, Rush CM, Rudd DM, Govan BL, Ketheesan N, 2016. Development of a diet-induced murine model of diabetes featuring cardinal metabolic and pathophysiological abnormalities of type 2 diabetes. Biol Open 5: 11491162.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR, 1999. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 94: 24672474.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Goodman ZD, 2007. Grading and staging systems for inflammation and fibrosis in chronic liver diseases. J Hepatol 47: 598607.

  • 34.

    Bedossa P, Poitou C, Veyrie N, Bouillot JL, Basdevant A, Paradis V, Tordjman J, Clement K, 2012. Histopathological algorithm and scoring system for evaluation of liver lesions in morbidly obese patients. Hepatology 56: 17511759.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Junqueira LC, Cossermelli W, Brentani R, 1978. Differential staining of collagens type I, II and III by sirius red and polarization microscopy. Arch Histol Jpn 41: 267274.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Lowell BB, Shulman GI, 2005. Mitochondrial dysfunction and type 2 diabetes. Science 307: 384387.

  • 37.

    Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, Gorgun C, Glimcher LH, Hotamisligil GS, 2004. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306: 457461.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Yu J, Shen J, Sun TT, Zhang X, Wong N, 2013. Obesity, insulin resistance, NASH and hepatocellular carcinoma. Semin Cancer Biol 23: 483491.

  • 39.

    Patel A, Harrison SA, 2012. Hepatitis C virus infection and nonalcoholic steatohepatitis. Gastroenterol Hepatol (N Y) 8: 305312.

  • 40.

    Onofrio LI, Arocena AR, Paroli AF, Cabalen ME, Andrada MC, Cano RC, Gea S, 2015. Trypanosoma cruzi infection is a potent risk factor for non-alcoholic steatohepatitis enhancing local and systemic inflammation associated with strong oxidative stress and metabolic disorders. PLoS Negl Trop Dis 9: e0003464.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Buzzetti E, Pinzani M, Tsochatzis EA, 2016. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 65: 10381048.

  • 42.

    Changbumrung S, Ratarasarn S, Hongtong K, Migasena P, Vutikes S, Migasena S, 1988. Lipid composition of serum lipoprotein in opisthorchiasis. Ann Trop Med Parasitol 82: 263269.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Stanley RG, Jackson CL, Griffiths K, Doenhoff MJ, 2009. Effects of Schistosoma mansoni worms and eggs on circulating cholesterol and liver lipids in mice. Atherosclerosis 207: 131138.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Mukerjee S, Chander R, Tekwani BL, Gupta S, Katiyar JC, Shukla OP, Kapoor NK, 1990. Molecular basis of hyperlipidemia in golden hamsters during experimental infection with Ancylostoma ceylanicum (Nematoda:Strongylidae). Int J Parasitol 20: 217223.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Kozat S, Denizhan V, 2010. Glucose, lipid, and lipoprotein levels in sheep naturally infected with Fasciola hepatica. J Parasitol 96: 657659.

  • 46.

    Farrell GC, Larter CZ, 2006. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology 43 (Suppl 1): S99S112.

  • 47.

    Abdelmalek MF, Suzuki A, Guy C, Unalp-Arida A, Colvin R, Johnson RJ, Diehl AM, Nonalcoholic Steatohepatitis Clinical Research N, 2010. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology 51: 19611971.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 566 403 31
Full Text Views 759 28 1
PDF Downloads 272 26 1
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save