Characterization of ESBL-Producing Salmonella enterica Serovar Infantis Infection in Humans, Lima, Peru

Coralith Garcia Universidad Peruana Cayetano Heredia, Lima, Peru;
Hospital Nacional Cayetano Heredia, Lima, Peru;

Search for other papers by Coralith Garcia in
Current site
Google Scholar
PubMed
Close
,
Noemí Hinostroza Universidad Peruana Cayetano Heredia, Lima, Peru;

Search for other papers by Noemí Hinostroza in
Current site
Google Scholar
PubMed
Close
,
Lizeth Astocondor Universidad Peruana Cayetano Heredia, Lima, Peru;

Search for other papers by Lizeth Astocondor in
Current site
Google Scholar
PubMed
Close
,
Theresa Ochoa Universidad Peruana Cayetano Heredia, Lima, Peru;

Search for other papers by Theresa Ochoa in
Current site
Google Scholar
PubMed
Close
,
Jan Jacobs Institute of Tropical Medicine Antwerp, Antwerp, Belgium

Search for other papers by Jan Jacobs in
Current site
Google Scholar
PubMed
Close
, and
for the Salmoiber CYTED Network Universidad Peruana Cayetano Heredia, Lima, Peru;
Hospital Nacional Cayetano Heredia, Lima, Peru;
Institute of Tropical Medicine Antwerp, Antwerp, Belgium

Search for other papers by for the Salmoiber CYTED Network in
Current site
Google Scholar
PubMed
Close
Restricted access

Salmonella enterica serovar Infantis is causing an increasing number of infections worldwide. Our aim was to describe the characteristics of S. enterica serovar Infantis among patients attended in a hospital of Lima, Peru. Fifty cases of salmonellosis were seen during October 2015–May 2017; Salmonella Infantis was detected in 36% (n = 18) of them, displacing Enteritidis and Typhimurium (n = 13, 26%, each). Seventeen cases caused by Salmonella Infantis were presented as diarrheal illnesses; only one extraintestinal case (bacteremia) was seen in a 1-year-old infant. This serovar is resistant to multiple groups of antimicrobials, showing only fully susceptibility to carbapenems. Compared with Infantis, other serovars analyzed (mainly Enteritidis and Typhimurium) showed a lower frequency of resistance to antimicrobials such as trimethoprim–sulfamethoxazole, ampicillin, and chloramphenicol. The antibiotic with the highest frequency of resistance was ciprofloxacin. Further studies are needed to evaluate the routes of transmission and measures of control of this multidrug-resistant Salmonella.

Author Notes

Address correspondence to Coralith Garcia, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martin de Porres, Lima 31, Peru. E-mail: coralith.garcia@upch.pe

Authors’ addresses: Coralith Garcia, Noemí Hinostroza, Lizeth Astocondor, and Theresa Ochoa, Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander von Humboldt, Lima, Peru, E-mails: coralith.garcia@upch.pe, noemi.hinostroza.s@gmail.com, lizeth1226@hotmail.com, and theresa.j.ochoa@uth.tmc.edu. Jan Jacobs, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium, E-mail: jjacobs@itg.be.

  • 1.

    Ao TT, Feasey NA, Gordon MA, Keddy KH, Angulo FJ, Crump JA, 2015. Global burden of invasive nontyphoidal Salmonella disease, 2010. Emerg Infect Dis 21: 941949.

  • 2.

    Silva C et al. 2017. Characterization of Salmonella enterica isolates causing bacteremia in Lima, Peru, using multiple typing methods. PLoS One 12: e0189946.

  • 3.

    Kuang D, 2018. Increase in ceftriaxone resistance and widespread extended-spectrum β-lactamases genes among Salmonella enterica from human and nonhuman sources. Foodborne Pathog Dis 15: 770775.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Fernandes SA, Camargo CH, Francisco GR, Bueno MFC, Garcia DO, Doi Y, Casas MRT, 2016. Prevalence of extended-spectrum β-lactamases CTX-M-8 and CTX-M-2-producing Salmonella serotypes from clinical and nonhuman isolates in Brazil. Microb Drug Resist 23: 580589.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Cartelle Gestal M, Zurita J, Paz y Mino A, Ortega-Paredes D, Alcocer I, 2016. Characterization of a small outbreak of Salmonella enterica serovar Infantis that harbour CTX-M-65 in Ecuador. Braz J Infect Dis 20: 406407.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Zamudio ML, Meza A, Bailón H, Martinez-Urtaza J, Campos J, 2011. Experiencias en la vigilancia epidemiológica de agentes patógenos transmitidos por alimentos a través de electroforésis en campo pulsado (PFGE) en el Perú. Rev Peru Med Exp Salud Publica 28: 128135.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Clinical and Laboratory Standards Institute, 2016. Performance Standards for Antimicrobial Susceptibility Testing. Twenty Sixth Informational Supplement. M100-S26. Wayne, PA: CLSI.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Belaaouaj A, Lapoumeroulie C, Caniça MM, Vedel G, Névot P, Krishnamoorthy R, Paul G, 1994. Nucleotide sequences of the genes coding for the TEM-like/3-lactamases IRT-1 and IRT-2 (formerly called TRI-1 and TRI-2). FEMS Microbiol Lett 120: 7580.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Batchelor M, Hopkins K, Threlfall EJ, Stallwood AD, Davies RH, Liebana E, 2005. blaCTX-M genes in clinical Salmonella isolates recovered from humans in England and Wales from 1992 to 2003. Antimicrob Agents Chemother 49: 13191322.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Pitout JD, Thomson KS, Hanson ND, Ehrhardt AF, Moland ES, Sanders CC, 1998. Beta-lactamases responsible for resistance to expanded-spectrum cephalosporins in Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis isolates recovered in South Africa. Antimicrob Agents Chemother 42: 13501354.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Iriarte A et al. 2017. Draft genome sequence of Salmonella enterica subsp. enterica serovar Infantis Strain SPE101, isolated from a chronic human infection. Genome Announc 5: e00679e00717.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Colquechagua F, Sevillano C, Gonzales E, 2015. Enterobacterias productoras de betalactamasas de espectro extendido en muestras fecales en el Instituto Nacional de Salud del Niño, Perú. Rev Peru Med Exp Salud Publica 32: 2632.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Antunes P, Mourão J, Campos J, Peixe L, 2016. Salmonellosis: the role of poultry meat. Clin Microbiol Infect 22: 110121.

  • 14.

    Nógrády N, Tóth Á, Kostyák Á, Pászti J, Nagy B, 2007. Emergence of multidrug-resistant clones of Salmonella Infantis in broiler chickens and humans in Hungary. J Antimicrob Chemother 60: 645648.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Marder Mph EP et al. 2018. Preliminary incidence and trends of infections with pathogens transmitted commonly through food–foodborne diseases active surveillance network, 10 U.S. sites, 2006–2017. MMWR Morb Mortal Wkly Rep 67: 324328.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Brown AC, Chen JC, Watkins LKF, Campbell D, Folster JP, Tate H, Wasilenko J, Van Tubbergen C, Friedman CR, 2018. CTX-M-65 extended-spectrum β-lactamase-producing Salmonella enterica serotype Infantis, United States. Emerg Infect Dis 24:22842291.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Granda A, Riveros M, Martínez-Puchol S, Ocampo K, Laureano-Adame L, Corujo A, Reyes I, Ruiz J, Ochoa TJ, 2019. Presence of extended-spectrum β-lactamase, CTX-M-65 in Salmonella enterica serovar Infantis isolated from children with diarrhea in Lima, Peru. Pediatr Infect Dis J. DOI: 10.1055/s-0039-1685502.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 315 234 13
Full Text Views 1114 17 1
PDF Downloads 490 12 1
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save