A Direct from Blood/Plasma Reverse Transcription–Polymerase Chain Reaction for Dengue Virus Detection in Point-of-Care Settings

Ninad Mehta School of Public Health, University of Alberta, Edmonton, Canada;

Search for other papers by Ninad Mehta in
Current site
Google Scholar
PubMed
Close
,
Bastien Perrais School of Public Health, University of Alberta, Edmonton, Canada;

Search for other papers by Bastien Perrais in
Current site
Google Scholar
PubMed
Close
,
Kimberly Martin School of Public Health, University of Alberta, Edmonton, Canada;

Search for other papers by Kimberly Martin in
Current site
Google Scholar
PubMed
Close
,
Anil Kumar Department of Cell Biology, University of Alberta, Edmonton, Canada;

Search for other papers by Anil Kumar in
Current site
Google Scholar
PubMed
Close
,
Tom C. Hobman Department of Cell Biology, University of Alberta, Edmonton, Canada;
Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada;

Search for other papers by Tom C. Hobman in
Current site
Google Scholar
PubMed
Close
,
Mary Noreen Cabalfin-Chua Section of Pediatric Infectious Diseases, Department of Pediatrics, Chong Hua Hospital, Cebu, Philippines;

Search for other papers by Mary Noreen Cabalfin-Chua in
Current site
Google Scholar
PubMed
Close
,
Manuel Emerson Donaldo Cebu Institute of Medicine, Cebu, Philippines;

Search for other papers by Manuel Emerson Donaldo in
Current site
Google Scholar
PubMed
Close
,
Maria Salome Siose Painaga Lebumfacil-Santa Ana Medical Center, Cebu, Philippines;

Search for other papers by Maria Salome Siose Painaga in
Current site
Google Scholar
PubMed
Close
,
James Yared Gaite Lebumfacil-Santa Ana Medical Center, Cebu, Philippines;

Search for other papers by James Yared Gaite in
Current site
Google Scholar
PubMed
Close
,
Vanessa Tran Tropical Disease Unit, The University Health Network-Toronto General Hospital, University of Toronto, Toronto, Canada;

Search for other papers by Vanessa Tran in
Current site
Google Scholar
PubMed
Close
,
Kevin C. Kain Tropical Disease Unit, The University Health Network-Toronto General Hospital, University of Toronto, Toronto, Canada;

Search for other papers by Kevin C. Kain in
Current site
Google Scholar
PubMed
Close
,
Michael T. Hawkes School of Public Health, University of Alberta, Edmonton, Canada;
Department of Pediatrics, University of Alberta, Edmonton, Canada;
Women and Children’s Health Research Institute, Edmonton, Canada;
Stollery Science Lab, Edmonton, Canada

Search for other papers by Michael T. Hawkes in
Current site
Google Scholar
PubMed
Close
, and
Stephanie K. Yanow School of Public Health, University of Alberta, Edmonton, Canada;
Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada;

Search for other papers by Stephanie K. Yanow in
Current site
Google Scholar
PubMed
Close
Restricted access

Infection with dengue virus (DENV) is widespread across tropical regions and can result in severe disease. Early diagnosis is important both for patient management and to differentiate infections that present with similar symptoms, such as malaria, chikungunya, and Zika. Rapid diagnostic tests that are used presently for point-of-care detection of DENV antigens lack the sensitivity of molecular diagnostics that detect viral RNA. However, no molecular diagnostic test for DENV is available for use in field settings. In this study, we developed and validated a reverse transcription–polymerase chain reaction (RT-PCR) for the detection of DENV adapted for use in field settings. Reverse transcription–polymerase chain reaction was performed directly from plasma samples without RNA extraction. The assay detected all four serotypes of DENV spiked into blood or plasma. Our RT-PCR does not cross-react with pathogens that cause symptoms that overlap with dengue infection. The test performed equally well in a conventional laboratory qPCR instrument and a small, low-cost portable instrument that can be used in a field setting. The lower limit of detection for the assay was 1 × 104 genome copy equivalents/mL in blood. Finally, we validated our test using 126 archived patient samples. The sensitivity of our RT-PCR was 76.7% (95% CI: 65.8–87.9%) on the conventional instrument, and 78.3% (95% CI: 65.8–87.9%) on the field instrument, when compared with the RealStar Dengue RT-PCR Kit 2.0. The molecular test described here is user-friendly, low-cost, and can be used in regions with limited laboratory capabilities.

Author Notes

Address correspondence to Stephanie K. Yanow, School of Public Health, University of Alberta, Katz Group Centre 6-032B, Edmonton, Alberta T6G 2E1, Canada. E-mail: yanow@ualberta.ca

Authors’ addresses: Ninad Mehta, Bastien Perrais, Kimberly Martin, and Stephanie K. Yanow, School of Public Health, University of Alberta, Edmonton, Canada, E-mails: ntmehta@ualberta.ca, bastienperrais1@gmail.com, sharplin@ualberta.ca, and yanow@ualberta.ca. Anil Kumar and Tom C. Hobman, Department of Cell Biology, University of Alberta, Alberta, Canada, E-mails: anilkuma@ualberta.ca and thobman@ualberta.ca. Mary Noreen Cabalfin-Chua, Section of Pediatric Infectious Diseases, Department of Pediatrics, Chong Hua Hospital, Cebu, Philippines, E-mail: mncchuamd@gmail.com. Manuel Emerson Donaldo, Department of Medicine, Cebu Institute of Medicine, Cebu, Philippines, E-mail: sambagii2000@icloud.com. Maria Salome Siose Painaga and James Yared Gaite, Lebumfacil-Santa Ana Medical Center, Cebu, Philippines, E-mails: sakepp@yahoo.com and jamesyaredgaite@yahoo.com. Vanessa Tran, Tropical Disease Unit, UHN-Toronto General Hospital, University of Toronto, Toronto, Canada, E-mail: vanessa.tran@utoronto.ca. Kevin C. Kain, Tropical Disease Unit, UHN-Toronto General Hospital, University of Toronto, Toronto, Canada, E-mail: kevin.kain@uhn.ca. Michael T. Hawkes, Department of Pediatrics, University of Alberta, Edmonton, Canada, E-mail: mthawkes@ualberta.ca.

  • 1.

    Holmes EC, Twiddy SS, 2003. The origin, emergence and evolutionary genetics of dengue virus. Infect Genet Evol 3: 1928.

  • 2.

    Bhatt S et al. 2013. The global distribution and burden of dengue. Nature 496: 504507.

  • 3.

    Alejandria MM, 2015. Dengue haemorrhagic fever or dengue shock syndrome in children. BMJ Clin Evid 2015: 0917.

  • 4.

    Wong HB, 1981. Dengue haemorrhagic fever in Singapore. Ann Acad Med Singapore 10: 9198.

  • 5.

    Soo KM, Khalid B, Ching SM, Chee HY, 2016. Meta-analysis of dengue severity during infection by different dengue virus serotypes in primary and secondary infections. PLoS One 11: e0154760.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Dans AL, Dans LF, Lansang MAD, Silvestre MAA, Guyatt GH, 2018. Controversy and debate on dengue vaccine series-paper 1: review of a licensed dengue vaccine: inappropriate subgroup analyses and selective reporting may cause harm in mass vaccination programs. J Clin Epidemiol 95: 137139.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Lee JS, Lourenco J, Gupta S, Farlow A, 2018. A multi-country study of dengue vaccination strategies with Dengvaxia and a future vaccine candidate in three dengue-endemic countries: Vietnam, Thailand, and Colombia. Vaccine 36: 23462355.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Teles FR, Prazeres DM, Lima-Filho JL, 2005. Trends in dengue diagnosis. Rev Med Virol 15: 287302.

  • 9.

    Guzman MG, Harris E, 2015. Dengue. Lancet 385: 453465.

  • 10.

    Johnson BW, Russell BJ, Lanciotti RS, 2005. Serotype-specific detection of dengue viruses in a fourplex real-time reverse transcriptase PCR assay. J Clin Microbiol 43: 49774983.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Santiago GA, Vergne E, Quiles Y, Cosme J, Vazquez J, Medina JF, Medina F, Colon C, Margolis H, Munoz-Jordan JL, 2013. Analytical and clinical performance of the CDC real time RT-PCR assay for detection and typing of dengue virus. PLoS Negl Trop Dis 7: e2311.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Najioullah F, Viron F, Cesaire R, 2014. Evaluation of four commercial real-time RT-PCR kits for the detection of dengue viruses in clinical samples. Virol J 11: 164.

  • 13.

    Zhang H, Li W, Wang J, Peng H, Che X, Chen X, Zhou Y, 2014. NS1-based tests with diagnostic utility for confirming dengue infection: a meta-analysis. Int J Infect Dis 26: 5766.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Shan X, Wang X, Yuan Q, Zheng Y, Zhang H, Wu Y, Yang J, 2015. Evaluation of the diagnostic accuracy of nonstructural protein 1 Ag-based tests for dengue virus in Asian population: a meta-analysis. BMC Infect Dis 15: 360.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Tricou V, Vu HT, Quynh NV, Nguyen CV, Tran HT, Farrar J, Wills B, Simmons CP, 2010. Comparison of two dengue NS1 rapid tests for sensitivity, specificity and relationship to viraemia and antibody responses. BMC Infect Dis 10: 142.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Hunsperger EA et al. 2014. Evaluation of commercially available diagnostic tests for the detection of dengue virus NS1 antigen and anti-dengue virus IgM antibody. PLoS Negl Trop Dis 8: e3171.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Osorio L, Ramirez M, Bonelo A, Villar LA, Parra B, 2010. Comparison of the diagnostic accuracy of commercial NS1-based diagnostic tests for early dengue infection. Virol J 7: 361.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Malewicz B, Jenkin HM, 1979. Development of dengue virus plaques under serum-free overlay medium. J Clin Microbiol 9: 609614.

  • 19.

    Trager W, Jensen JB, 2005. Human malaria parasites in continuous culture. 1976. J Parasitol 91: 484486.

  • 20.

    Weidmann M, Sall AA, Manuguerra JC, Koivogui L, Adjami A, Traore FF, Hedlund KO, Lindegren G, Mirazimi A, 2011. Quantitative analysis of particles, genomes and infectious particles in supernatants of haemorrhagic fever virus cell cultures. Virol J 8: 81.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Wang WK, Lee CN, Kao CL, Lin YL, King CC, 2000. Quantitative competitive reverse transcription-PCR for quantification of dengue virus RNA. J Clin Microbiol 38: 33063310.

  • 22.

    Chao DY, Davis BS, Chang GJ, 2007. Development of multiplex real-time reverse transcriptase PCR assays for detecting eight medically important flaviviruses in mosquitoes. J Clin Microbiol 45: 584589.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Lai YL, Chung YK, Tan HC, Yap HF, Yap G, Ooi EE, Ng LC, 2007. Cost-effective real-time reverse transcriptase PCR (RT-PCR) to screen for Dengue virus followed by rapid single-tube multiplex RT-PCR for serotyping of the virus. J Clin Microbiol 45: 935941.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Trajman A, Luiz RR, 2008. McNemar chi2 test revisited: comparing sensitivity and specificity of diagnostic examinations. Scand J Clin Lab Invest 68: 7780.

  • 25.

    Zhong JF, Weiner LP, Burke K, Taylor CR, 2007. Viral RNA extraction for in-the-field analysis. J Virol Methods 144: 98102.

  • 26.

    Monleau M, Montavon C, Laurent C, Segondy M, Montes B, Delaporte E, Boillot F, Peeters M, 2009. Evaluation of different RNA extraction methods and storage conditions of dried plasma or blood spots for human immunodeficiency virus type 1 RNA quantification and PCR amplification for drug resistance testing. J Clin Microbiol 47: 11071118.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    de la Cruz-Hernandez SI, Flores-Aguilar H, Gonzalez-Mateos S, Lopez-Martinez I, Alpuche-Aranda C, Ludert JE, del Angel RM, 2013. Determination of viremia and concentration of circulating nonstructural protein 1 in patients infected with dengue virus in Mexico. Am J Trop Med Hyg 88: 446454.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Tricou V, Minh NN, Farrar J, Tran HT, Simmons CP, 2011. Kinetics of viremia and NS1 antigenemia are shaped by immune status and virus serotype in adults with dengue. PLoS Negl Trop Dis 5: e1309.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Pang J, Chia PY, Lye DC, Leo YS, 2017. Progress and challenges towards point-of-care diagnostic development for dengue. J Clin Microbiol 55: 33393349.

  • 30.

    Go YY et al. 2016. A pan-dengue virus reverse transcription-insulated isothermal PCR assay intended for point-of-need diagnosis of dengue virus infection by use of the POCKIT nucleic acid analyzer. J Clin Microbiol 54: 15281535.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Tsai JJ, Liu LT, Lin PC, Tsai CY, Chou PH, Tsai YL, Chang HG, Lee PA, 2018. Validation of the pockit dengue virus reagent set for rapid detection of dengue virus in human serum on a field-deployable PCR system. J Clin Microbiol 56: e01865-17.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Dhochak N, Kabra SK, Lodha R, 2018. Dengue and chikungunya infections in children: guest editor: Bhim S. Pandhi. Indian J Pediatr 86: 287295.

  • 33.

    Higuera A, Ramirez JD, 2018. Molecular epidemiology of dengue, yellow fever, Zika and Chikungunya arboviruses: an update. Acta Trop 190: 99111.

  • 34.

    Acosta-Ampudia Y, Monsalve DM, Rodriguez Y, Pacheco Y, Anaya JM, Ramirez-Santana C, 2018. Mayaro: an emerging viral threat? Emerg Microbes Infect 7: 163.

  • 35.

    Taylor BJ et al. 2014. A lab-on-chip for malaria diagnosis and surveillance. Malar J 13: 179.

  • 36.

    Taylor BJ, Lanke K, Banman SL, Morlais I, Morin MJ, Bousema T, Rijpma SR, Yanow SK, 2017. A direct from blood reverse transcriptase polymerase chain reaction assay for monitoring falciparum malaria parasite transmission in elimination settings. Am J Trop Med Hyg 97: 533543.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 738 600 69
Full Text Views 1020 17 1
PDF Downloads 542 15 1
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save