Association between Insulin-Like Growth Factor-I Levels and the Disease Progression and Anemia in Visceral Leishmaniasis

Flaviane Alves de Pinho Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil;
Departamento de Anatomia, Patologia e Clínica, Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia, Salvador, Brazil;

Search for other papers by Flaviane Alves de Pinho in
Current site
Google Scholar
PubMed
Close
,
Célia Maria Vieira Vendrame Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil;

Search for other papers by Célia Maria Vieira Vendrame in
Current site
Google Scholar
PubMed
Close
,
Bruna Leal Lima Maciel Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, Brazil;

Search for other papers by Bruna Leal Lima Maciel in
Current site
Google Scholar
PubMed
Close
,
Lucilene dos Santos Silva Setor de Patologia Animal, Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, Brazil;

Search for other papers by Lucilene dos Santos Silva in
Current site
Google Scholar
PubMed
Close
,
Samantha Ive Miyashiro Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil;

Search for other papers by Samantha Ive Miyashiro in
Current site
Google Scholar
PubMed
Close
,
Selma Maria Bezerra Jerônimo Departamento de Bioquímica, Centro de Biociências and Institute of Tropical Medicine of Rio Grande do Norte, Universidade Federal do Rio Grande do Norte, Natal, Brazil;
National Institute of Science and Technology of Tropical Diseases, Natal, Brazil;

Search for other papers by Selma Maria Bezerra Jerônimo in
Current site
Google Scholar
PubMed
Close
, and
Hiro Goto Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil;
Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil

Search for other papers by Hiro Goto in
Current site
Google Scholar
PubMed
Close
Restricted access

We analyzed the association between insulin-like growth factor-I (IGF-I) and the pathogenesis of anemia during active visceral leishmaniasis (VL). Serum levels of IGF-I, IGF-binding protein 3 (IGFBP3), and cytokines were measured in samples from individuals with active VL and cured VL, asymptomatic Leishmania-infected, and noninfected individuals. Then, we extended our analysis to VL dogs to evaluate hematimetric parameters, bone marrow alterations, and cytokine and IGF-I expression. We identified a positive correlation between lower IGF-I and IGFBP3 levels in active VL patients and lower hemoglobin levels. In infected dogs, there was a positive correlation between lower IGF-I expression in the bone marrow and lower peripheral blood hematocrit and hemoglobin levels. There was no correlation between decreased IGF-I level/expression and any measured cytokine serum levels in either host. The data suggest that low IGF-I expression is associated with pathogenesis of anemia in active VL, primarily in severe cases, by mechanisms other than alterations in cytokine production.

    • Supplemental Materials (DOCX 22 KB)

Author Notes

Address correspondence to Flaviane Alves de Pinho, Universidade Federal da Bahia, Av. Adhemar de Barros, 500, Salvador 40170-110, Brazil. E-mail: flaviane.alves@ufba.br

Financial support: This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (fellowship 2010/16257-2 to F. A. P.), Fundação de Amparo à Pesquisa do Estado da Bahia (fellowship 1780-2007 to C. M. V. V.), Conselho Nacional de Pesquisa (research fellowship to S. M. B. J. and H. G. and research grant 484499/2006), the Seropidemiology and Immunobiology Laboratory LIM/38 (HC-FMUSP), and National Institutes of Health (AI 030639).

Authors’ addresses: Flaviane Alves de Pinho, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, and Departamento de Anatomia, Patologia e Clínicas, Universidade Federal da Bahia, Salvador, Brazil, E-mail flaviane.alves@ufba.br. Célia Maria Vieira Vendrame, Instituto de Medicina Tropical, São Paulo da Universidade de São Paulo, São Paulo, Brazil, E-mail: vendramecelia@yahoo.com.br. Bruna Leal Lima Maciel, Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, Brazil, E-mail: brunalimamaciel@gmail.com, Lucilene dos Santos Silva, Setor de Patologia Animal, Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, Brazil, E-mail: vetluc@hotmail.com. Samantha Ive Miyashiro, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil, E-mail samanthaive@yahoo.com. Selma Maria Bezerra Jerônimo, Departamento de Bioquímica, Centro de Biociências and Institute of Tropical Medicine of Rio Grande do Norte, Universidade Federal do Rio Grande do Norte, Natal, Brazil, E-mail: smbj@cb.ufm.br. Hiro Goto, Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil, E-mail: hgoto@usp.br.

These authors contributed equally to this work.

  • 1.

    Saporito L, Giammanco GM, De Grazia S, Colomba C, 2013. Visceral leishmaniasis: host-parasite interactions and clinical presentation in the immunocompetent and in the immunocompromised host. Int J Infect Dis 17: 572576.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Carvalho MDT, Alonso DP, Vendrame CMV, Costa DL, Costa CHN, Werneck GL, Ribolla PEM, Goto H, 2014. Lipoprotein lipase and PPAR alpha gene polymorphisms, increased very-low-density lipoprotein levels, and decreased high-density lipoprotein levels as risk markers for the development of visceral leishmaniasis by Leishmania infantum. Mediators Inflamm 2014: 230129.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Goto Y, Cheng J, Omachi S, Morimoto A, 2017. Prevalence, severity, and pathogeneses of anemia in visceral leishmaniasis. Parasitol Res 116: 457464.

  • 4.

    Costa CHN, Werneck GL, Costa DL, Holanda TA, Aguiar GB, Carvalho AS, Cavalcanti JC, Santos LS, 2010. Is severe visceral leishmaniasis a systemic inflammatory response syndrome? A case control study. Rev Soc Bras Med Trop. 43: 386392.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Lafuse WP, Story R, Mahylis J, Gupta G, Varikuti S, Steinkamp H, Oghumu S, Satoskar AR, 2013. Leishmania donovani infection induces anemia in hamsters by differentially altering erythropoiesis in bone marrow and spleen. PLoS One 8: e59509.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Cotterell SEJ, Engwerda CR, Kaye PM, 2000. Enhanced hematopoietic activity accompanies parasite expansion in the spleen and bone marrow of mice infected with Leishmania donovani. Infect Immun 68: 18401848.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Pinto AI, Brown N, Preham O, Doehl JSP, Ashwin H, Kaye PM, 2017. TNF signalling drives expansion of bone marrow CD4+ T cells responsible for HSC exhaustion in experimental visceral leishmaniasis. PLoS Pathog 13: e1006465.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Zumkeller W, 2002. The insulin-like growth factor system in hematopoietic cells. Leuk Lymphoma 43: 487491.

  • 9.

    O’Connor JC, McCusker RH, Strle K, Johnson RW, Dantzer R, Kelley KW, 2008. Regulation of IGF-I function by proinflammatory cytokines: at the interface of immunology and endocrinology. Cell Immunol 252: 91110.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Santos-Oliveira JR, Regis EG, LealCá CRB, Cunha RV, BozzaPatrí PT, Da-Cruz AM, 2011. Evidence that lipopolisaccharide may contribute to the cytokine storm and cellular activation in patients with visceral leishmaniasis. PLoS Negl Trop Dis 5: e1198.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    dos Santos PL et al. 2016. The severity of visceral leishmaniasis correlates with elevated levels of serum IL-6, IL-27 and sCD14. PLoS Negl Trop Dis 10: e0004375.

  • 12.

    Arkins S, Rebeiz N, Brunke-Reese DL, Biragyn A, Kelley KW, 1995. Interferon-gamma inhibits macrophage insulin-like growth factor-I synthesis at the transcriptional level. Mol Endocrinol 9: 350360.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Fan J, Char D, 1995. Regulation of insulin-like growth factor-I (IGF-I) and IGF-binding proteins by tumor necrosis factor. Am J Physiol 269: R1204R1212.

  • 14.

    Askenasy N, 2015. Interferon and tumor necrosis factor as humoral mechanisms coupling hematopoietic activity to inflammation and injury. Blood Rev 29: 1115.

  • 15.

    Braz RFS, Nascimento ET, Martins DRA, Wilson ME, Pearson RD, Reed SG, Jeronimo SMB, 2002. The sensitivity and specificity of Leishmania chagasi recombinant K39 antigen in the diagnosis of American visceral leishmaniasis and in differentiating active from subclinical infection. Am J Trop Med Hyg 67: 344348.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Hasegawa MY, Kohayagawa A, Brandão LP, Morgulis MSFa, Hagiwara MK, 2005. Evaluation of neutrophil oxidative metabolism in canine monocytic ehrlichiosis. Vet Clin Pathol 34: 213217.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Messick J, 2010. Erithrocytes. Schalm’s Veterinary Hematology. Ames, IA: Wiley-Blackwell.

  • 18.

    Harvey JW, Stevens A, Lowe JS, Scott I, 2012. Veterinary Hematology. St. Louis, MO: Elsevier Inc.

  • 19.

    Livak KJ, Schmittgen TD, 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25: 402408.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Elmlinger MW, Kühnel W, Weber MM, Ranke MB, 2004. Reference ranges for two automated chemiluminescent assays for serum insulin-like growth factor I (IGF-I) and IGF-binding protein 3 (IGFBP-3). Clin Chem Lab Med 42: 654664.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Lopes AC, 2006. Tratado de Clínica médica, Vol. 3. São Paulo, Roca.

  • 22.

    Daneshbod Y, Dehghani SJ, Daneshbod K, 2010. Bone marrow aspiration findings in kala-azar. Acta Cytol 54: 1224.

  • 23.

    Loría-Cervera EN, Andrade-Narváez FJ, 2014. Animal models for the study of leishmaniasis immunology. Rev Inst Med Trop Sao Paulo 56: 111.

  • 24.

    Nicolato RDC et al. 2013. Clinical forms of canine visceral leishmaniasis in naturally Leishmania infantum-infected dogs and related myelogram and hemogram changes. PLoS One 8: e82947.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Varma N, Naseem S, 2010. Hematologic changes in visceral leishmaniasis/kala azar. Indian J Hematol Blood Transfus 26: 7882.

  • 26.

    Welniak LA, Karas M, Yakar S, Anver MR, Murphy WJ, LeRoith D, 2004. Effects of organ-specific loss of insulin-like growth factor-I production on murine hematopoiesis. Biol Blood Marrow Transplant 10: 3239.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Savino W, Smaniotto S, Dardenne M, 2005. Hematopoiesis. Varela-Nieto I, Chowen JA, eds. The Growth Hormone/Insulin-Like Growth Factor Axis During Development. Advances in Experimental Medicine and Biology, Vol. 567. Boston, MA: Springer.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Succurro E, Arturi F, Caruso V, Rudi S, Sciacqua A, Andreozzi F, Hribal ML, Perticone F, Sesti G, 2011. Low insulin-like growth factor-1 levels are associated with anaemia in adult non-diabetic subjects. Thromb Haemost 105: 365370.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Ratajczak J, Zhang Q, Pertusini E, Wojczyk BS, Wasik MA, Ratajczak MZ, 1998. The role of insulin (INS) and insulin-like growth factor-I (IGF-I) in regulating human erythropoiesis. Studies in vitro under serum-free conditions—comparison to other cytokines and growth factors. Leukemia 12: 371381.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Miniero R, Altomare F, Rubino M, Matarazzo P, Montanari C, Petri A, Raiola G, Bona G, 2012. Effect of recombinant human growth hormone (rhGH) on hemoglobin concentration in children with idiopathic growth hormone deficiency-related anemia. J Pediatr Hematol Oncol 34: 407411.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Choi JW, Kim SK, 2004. Association of serum insulin-like growth factor-I and erythropoiesis in relation to body iron status. Ann Clin Lab Sci 34: 324328.

  • 32.

    Miljuš G, Malenković V, Nedić O, 2013. The importance of metal ions for the formation and isolation of insulin-like growth factor-binding protein 3–transferrin (IGFBP-3–Tf) complexes, and the analysis of their physiological involvement. Metallomics 5: 251.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Pinho FA, Magalhães NA, Silva KR, Carvalho AA, Oliveira FLL, Ramos-Sanchez EM, Goto H, Costa FAL, 2013. Divergence between hepatic insulin-like growth factor (IGF)-I mRNA expression and IGF-I serum levels in Leishmania (Leishmania) infantum chagasi-infected dogs. Vet Immunol Immunopathol 151: 163167.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Lemaire J, Mkannez G, Guerfali FZ, Gustin C, Attia H, Sghaier RM, Dellagi K, Laouini D, Renard P, Sysco-Consortium, 2013. MicroRNA expression profile in human macrophages in response to leishmania major infection. PLoS Negl Trop Dis 7: e2478.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Marini MA, Mannino GC, Fiorentino TV, Andreozzi F, Perticone F, Sesti G, 2017. A polymorphism at IGF1 locus is associated with anemia. Oncotarget 8: 3239832406.

  • 36.

    Koury MJ, 2014. Abnormal erythropoiesis and the pathophysiology of chronic anemia. Blood Rev 28: 4966.

  • 37.

    Preham O, Pinho FA, Pinto AI, Rani GF, Brown N, Hitchcock IS, Goto H, Kaye PM, 2018. CD4+ T cells alter the stromal microenvironment and repress medullary erythropoiesis in murine visceral leishmaniasis. Front Immunol 9: 112.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    De Bruin AM, Voermans C, Nolte MA, 2014. Impact of interferon-γ on hematopoiesis. Blood 124: 24792486.

  • 39.

    Choi I, Muta K, Wickrema A, Krantz SB, Nishimura J, Nawata H, 2000. Interferon gamma delays apoptosis of mature erythroid progenitor cells in the absence of erythropoietin. Blood 95: 37423749.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Grigorakaki C, Morceau F, Chateauvieux S, Dicato M, Diederich M, 2011. Tumor necrosis factor alpha-mediated inhibition of erythropoiesis involves GATA-1/GATA-2 balance impairment and PU.1 over-expression. Biochem Pharmacol 82: 156166.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Schubert T, Echtenacher B, Hofstädter F, Männel DN, 2003. TNF-independent development of transient anemia of chronic disease in a mouse model of protracted septic peritonitis. Lab Invest 83: 17431750.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Schubert TE, Echtenacher B, Hofstädter F, Männel DN, 2005. Failure of interferon-gamma and tumor necrosis factor in mediating anemia of chronic disease in a mouse model of protracted septic peritonitis. Int J Mol Med 16: 753758.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 706 667 249
Full Text Views 1003 14 1
PDF Downloads 148 12 1
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save