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Abstract. Malaria-endemic countries have to decide how much of their limited resources for vector control to
allocate toward implementing long-lasting insecticidal nets (LLINs) versus indoor residual spraying (IRS). To help the
Mozambique Ministry of Health use an evidence-based approach to determine funding allocation toward various
malaria control strategies, the Global Fund convened the Mozambique Modeling Working Group which then used
JANUS, a software platform that includes integrated computational economic, operational, and clinical outcome
models that can link with different transmission models (in this case, OpenMalaria) to determine the economic value of
vector control strategies. Any increase in LLINs (from 80% baseline coverage) or IRS (from 80% baseline coverage)
would be cost-effective (incremental cost-effectiveness ratios < $114/disability-adjusted life year averted). However,
LLIN coverage increases tend to be more cost-effective than similar IRS coverage increases, except where both
pyrethroid resistance is high and LLIN usage is low. In high-transmission northern regions, increasing LLIN coverage
would be more cost-effective than increasing IRS coverage. In medium-transmission central regions, changing from
LLINs to IRS would be more costly and less effective. In low-transmission southern regions, LLINs were more costly
and less effective than IRS, due to low LLIN usage. In regions where LLINs are more cost-effective than IRS, it is worth
considering prioritizing LLIN coverage and use. However, IRS may have an important role in insecticide resistance
management and epidemic control. Malaria intervention campaigns are not a one-size-fits-all solution, and tailored

approaches are necessary to account for the heterogeneity of malaria epidemiology.

INTRODUCTION

In 2015, malaria resulted in an estimated 214 million cases
and 438,000 deaths worldwide; 89% of these cases and
91% of these deaths occurred in sub-Saharan Africa.” To
address this, the World Health Organization (WHO) has
recommended that all persons at risk for malaria should be
covered by at least one vector control intervention, either the
use of insecticide-treated nets (or long-lasting insecticidal
nets [LLINs]) or indoor residual spraying (IRS). Due to the
cost of these interventions, most countries in which malaria
is endemic have to decide how many resources to allocate
toward vector control, and within their budget for vector
control, whether to prioritize LLINs or IRS. For example, in
2014, the country of Mozambique was in the midst of
developing an application to the Global Fund to support its
malaria control programs in which decisions needed to be
made on what kinds of vector control would be implemented
and where. According to the last national cross-sectional
survey in Mozambique (performed in 2011), malaria accounts
for 29% of all deaths (42% among children < 5 years of
age),? for 40% of all outpatient visits and 60% of pediat-
ric ward admissions.® However, current epidemiologic data
show that malaria is on the rise with reported cases increas-
ing by 40% from 2013 to 2014, outpatient visits increasing
by 5%, and deaths increasing by 10%.4
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Currently, there is a relative dearth of evidence-based
approaches to determine how funds should be divided
between supporting LLINs and IRS. To facilitate decision-
making by the Mozambique Ministry of Health, the Global
Fund convened the Mozambique Modeling Working Group
(MMWG) that used JANUS, a computational economic,
operational, and clinical outcomes modeling platform con-
nected with OpenMalaria,® a malaria transmission model to
determine the value of changing LLIN and IRS coverage.
The goal of the MMWG was to investigate the cost-
effectiveness of differing allocation options of LLINs versus
IRS, taking into account the heterogeneous transmission
throughout the country, to inform the country’s Global Fund
application. This article describes the findings of the MMWG.

METHODS

Mozambique Modeling Working Group. Convened by
the Global Fund to Fight AIDS, Tuberculosis and Malaria in
2014, the MMWG consists of Johns Hopkins University, the
Pittsburgh Supercomputing Center at Carnegie Mellon Uni-
versity, Swiss Tropical and Public Health Institute, President’s
Malaria Initiative from the Centers for Disease Control
and Prevention, World Vision International in Mozambique,
National Malaria Control Program, Ministry of Health in
Mozambique, and the London School of Economics.

JANUS Malaria Mozambique Model. JANUS Malaria
includes integrated malaria clinical, economic, and opera-
tional models, and can connect to malaria transmission
models to compare the impact of implementing different
portfolios of interventions in a chosen location. Developed in
Python/Django, JANUS allows users to select a geographic
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location, import data on that location, choose what interven-
tions will comprise a portfolio, select the native characteris-
tics (e.g., efficacy, cost, duration of action) of each
intervention, and choose how, when, and where each
intervention will be implemented (e.g., geospatial coverage,
supply and administration costs, and target population over
time); it also allows users to run models deterministically or
stochastically. Our team has used JANUS in Kenya, Zambia,
and Vietnam to evaluate the cost-effectiveness of vector
control strategies. The MMWG used JANUS Malaria,
connected to the OpenMalaria malaria transmission model,
to determine the impact on malaria transmission and
generate the number of new malaria cases over time.
Supplemental Appendix provides details on JANUS’s malaria
clinical outcomes model (Figure 1) and Table 1 provides the
model input parameters, values, and data references. Both
models were run deterministically since all data inputs were
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TaBLE 1
Model input parameters, values, and sources

Probabilities
Parameter” Costs (2014 $US) 0-59 months old 5-14 years old > 15 years old
Gross national income per capita'® 541
IRS cost per person protected per yeart§ 2.08
LLIN cost per person protected per net distribution (every 3 years)t§ 2.75
RDT§ 0.73 0.30 0.30 0.30
Microscopy§ 0.90 0.0678 0.0678 0.0678
Care in rural area for uncomflicated malaria at
Government facility' "33 4.65; 7.849 0.5871 0.5871 0.5871
Private facility'1-32-34 6.51; 10.98¢ 0.0013 0.0013 0.0013
CHW' 0.12 0.0158 0.0158 0.0158
Shop/healer'’ 0.51 0.0297 0.0297 0.0297
Other'" 0.51 0.0271 0.0271 0.0271
Home/self-treatment’ 0.19 0.19 0.19
No treatment" 0.15 0.15 0.15
Hosspitalization for severe malaria®® 72.73
CcMme7 0.022 0.022 0.1392
Mortality from CM36-%7 0.182 0.182 0.2308
Neurological sequelae® 0.0278 0.0278 0
SMA36:37 0.173 0.173 0.1646
Mortality from SMA36-57 0.057 0.057 0.0769
Treatments Cure rates
Artemether—lumefantrine®®—*! 1.2 0.763 0.904 0.904
Artesunate—amodiaquine3%4%-42 0.047 0.889 0.9722 0.9722
Quinine®® 0.506 1]l 11l 11l
Non-ACT antimalarial*®~° 0.42 0.795 0.885 0.885
Nonmalarial drug Probabilities
Blood transfusion®”:4¢ 17.39 0.291 0.291 0
Progress to severe disease vs. naturally clear if not curedt 0.1 0 0
Durations
All ages 0-59 months old 5-14 years old > 15 years old
Missed productivity days*’ 2.9 3.41 3.41
Days sick/symptoms*’ 6.4 5.8 5.8
Anemia with transfusion™ 2
Anemia without transfusion** 14
Neurological sequelaett Lifelong
Disability weights*®
Malaria episode 0.191
Neurological sequelae 0.471
Anemia 0.012

ACT = artemisinin-based combination therapy; CHW = community health worker; CM = cerebral malaria; IRS = indoor residual spraying; LLIN = long-lasting insecticidal net; RDT = rapid

diagnostic test; SMA = severe malaria anemia.
*Numbers after parameter are references for the given values.

tTotal IRS budget with bendiocarb implementation costs doubled for proportion of population covered by bendiocarbs (13.9%) for the year in which they are planned to be sprayed
(as sprayed twice year). This total was divided by the population to be covered by IRS (assuming a 2.5% population growth rate per year to determine this value for 2015 and 2016) to
determine the cost per person protected by IRS. Additional costs per person sprayed were added to the resulting value to determine the total cost per person protected.

}Total cost per net divided by 1.82 persons per net.
§Calculated from in country data sources.
|Cost for those under 5 years of age; cost for those > 5 years of age.

lIAssumed to be 100% (mortality rate applied before cure rate; those not dead assumed to be cured).

**Expert opinion.
11Assumed to be lifelong, that any neurological outcomes caused irreversible damage.

high values, respectively, and represented the following three
large regions of Mozambique corresponding to each of these
transmission levels:

Northern region: high transmission intensity (EIR 20);
Anopheles gambiae and Anopheles arabiensis exhibit
high insecticide resistance; 65% LLIN usage conditional
on access' "2

Central region: medium transmission intensity (EIR 5);
Anopheles funestus exhibits medium insecticide resis-
tance; 60% LLIN usage conditional on access'''?

Southern region: low transmission intensity (EIR 1); A.
funestus exhibits high resistance; 35% LLIN usage condi-
tional on access'?

IRS scenarios assumed Actellic (pirimphos methyl) CS and
accounted for transmission intensity by region (described

above). We assumed there was no insecticide resistance as
Actellic CS exhibits little to no resistance. Additionally,
acceptance of IRS was not explicitly considered as the
coverage data inherently accounts for this among those in
the targeted population (i.e., in-county coverage estimates
account for acceptability of IRS among residents targeted
for IRS).

Currently, Mozambique deploys vector control through
campaigns at district level. Based on in-country reporting,
LLIN coverage varied by year (depending on distribution
and attrition) but at any one given time, net coverage is
80% or higher, while, as of 2011, the population covered
by IRS (among residents targeted for IRS) was 83%. To be
generally representative, we modeled a single, shared his-
toric deployment of IRS or LLINs for a region. For each
region, we modeled two baselines: 1) 80% coverage with
LLINs and 2) 80% coverage of IRS. Coverage was modeled
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per 1,000 persons (i.e., we modeled only the targeted pop-
ulation). We assumed LLINs and IRS are distributed every
3 and 1 years, respectively, and determined the cost of
each per person protected per distribution. Intervention
costs were derived from in-country budget planning and
documentation. The LLIN budget included the total prod-
uct, procurement, and distribution costs down to the local
level by the number of nets needed in 2014. The IRS bud-
get included insecticide procurement, supply chain man-
agement, implementation, and waste management for DDT
costs for Mozambique’s IRS implementation plan for 2014,
2015, and 2016. More details are provided in Supple-
mental Appendix.

Experimental scenarios and sensitivity analysis. Different
scenarios simulated the epidemiologic and economic impact
of progressively increasing LLIN and IRS coverage (from
80% up to 100% for each) under various conditions (e.g.,
different levels of LLIN usage and insecticide resistance,
and LLIN and IRS costs +20%) in the three regions in
Mozambique. Each scenario considered only one interven-
tion at a time (i.e., only LLINs or only IRS). For each scenario,
the following formula determined the incremental cost-
effectiveness ratio (ICER) compared with continuing the
baseline scenario:

(COS tscenario — COS z‘compazrator)

ICER =
(Health effectscomparator — Health effectsscenario)

with health effects measured in disability-adjusted life years
(DALYs). DALYs equaled the sum of the years lost to
disability (YLD) and the years of life lost (YLL) due to
premature mortality. The following formulas calculate the
YLD and YLL:

YLD = Number of incident cases x disability weight
x average duration of disability in years

YLL = Number of death
x life expectancy at age of death in years

Based on WHO guidelines, a scenario was considered
highly cost-effective versus its comparator if the ICERs were
less than Mozambique’s gross domestic product (GDP) per
capita ($608)'® and cost-effective if the ICERs were between
one and three times the GDP per capita, and not cost-effective
if the ICERs were more than three times the GDP per
capita ($1,823).

RESULTS

Baseline: current situation in Mozambique. Figure 2
shows the number of malaria episodes per 1,000 of the
population by region. The dotted lines in each panel
(representing 80% IRS in the left panels and 80% LLINs in
the right panels) plot the number of annual new malaria epi-
sodes per 1,000 persons for the next 3 years if the current
malaria control strategies in Mozambique were maintained
(i.e., there is no change in intervention strategy, initial cover-
age, or usage). The increase in the number of new malaria
episodes in years 2 and 3 with LLIN use reflect their single
deployment (in year 1) and their decreasing effectiveness

and coverage over time due to “wear and tear.” Figure 3
shows the total intervention, direct health care (i.e., provider
costs), and productivity loss costs over the 3 years if
continuing the same control strategy. Intervention costs per
1,000 persons in the targeted population were similar across
regions, costing ~$2,200 for LLINs and ~$4,850 for IRS, at
80% coverage. In Figure 3, the sum of the intervention costs
and direct health-care costs gives the total direct costs,
whereas the sum of the entire column vyields the total
societal costs. For example, in the northern region of
Mozambique, over a 3-year period implementing 80% IRS
resulted in $25,764 in total direct costs and $49,355 in
societal costs per 1,000 persons, whereas implementing
80% LLINs resulted in $25,631 in total direct costs and
$48,982 in societal costs per 1,000 persons (Figure 3A).

Impact of varying LLIN and IRS coverage. The solid
lines in Figure 2 show the number of malaria episodes for
changes in intervention campaign (i.e., either increase in
coverage or switching strategies) from the baseline interven-
tion assumed before the campaign change (i.e., intervention
at year 0) and assume the current usage and resistance
patterns in Mozambique. Episodes varied by region and
intervention. In northern regions, while LLIN use resulted in
fewer episodes over the 3-year period, LLIN campaigns
resulted in fewer episodes in year 1 and IRS campaigns
resulted in fewer episodes in year 3 (Figure 2A). In central
regions, LLIN campaigns tended to consistently result in
fewer episodes (Figure 2B). In southern regions, where
resistance levels were high and LLIN usage rates low,
IRS campaigns tended to result in fewer malaria epi-
sodes (Figure 2C).

Table 2 reports the number of malaria episodes, deaths,
and DALYs averted for each campaign compared with
maintaining Mozambique’s current control measures. All eval-
uated campaigns were effective at reducing Mozambique’s
malaria burden in the northern region. In the central region,
assuming use of LLINs with 60% usage, only increasing
coverage to 100% would reduce malaria’s burden, and
switching to IRS would result in additional episodes, deaths,
and DALYs.

Table 3 shows the economic results (ICER and cost per
additional episode averted). Negative values imply cost sav-
ings. In general, any increase in coverage of the baseline
intervention (in both LLIN and IRS scenarios) would be cost-
effective (ICERs < $114/DALY averted). However, LLINs
tended to be more cost-effective than IRS, except where
both pyrethroid resistance was high and LLIN usage
was low (e.g., in southern regions of Mozambique). Cost-
effectiveness varied by region (Table 3), reflecting the differ-
ences in malaria transmission, resistance, and LLIN usage.
In the northern regions, LLIN coverage would be more cost-
effective than IRS (economically dominant versus ICERs
$114-2,008/DALY averted). In the central regions, changing
from LLINs to IRS would not be cost-effective; in fact, it
would be more costly and less effective (i.e., dominated). In
the southern regions, at 80% coverage, LLINs were more
costly and less effective than IRS, due to LLINs’ low usage
rate of 35%; thus, IRS effectively covers more of the
population than LLINs (even at the same coverage level).

In general, LLIN campaign intervention costs were less
costly than IRS campaigns (~$2,200 for initial distribution at
80% coverage compared with ~$4,850 per 1,000 persons
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vention by region in Mozambique ([A] northern region; [B] central region; and [C] southern region) and assumed regional insecticide resistance

patterns and long-lasting insecticidal net (LLIN) usage rates.

over 3 years for IRS 80% coverage, Figure 3A-C). In the
northern and central regions, LLIN campaigns resulted not
only in lower intervention costs, but accrued lower direct and
indirect costs than IRS campaigns. While the intervention
costs were similar across regions, health-care costs and
productivity losses differed due to differences in trans-
mission and subsequent number of malaria episodes. In the
southern regions, IRS campaigns accrued lower direct
health-care costs (ranging from $9,584 to $13,672 per 1,000
persons) and productivity losses (ranging from $5,347 to
$8,240 per 1,000 persons) compared with LLIN campaigns

(direct costs ranging from $11,607 to $16,449 and productiv-
ity losses ranging from $7,140 to $10,199 per 1,000 persons)
as they were associated with a low usage rate (35%).
Cost-effectiveness results were robust to changes in
intervention costs. When LLINs cost 20% more and IRS cost
20% less ($3.30 and $1.66 per person protected, respec-
tively), in northern regions LLIN campaigns remained
dominant even though IRS campaigns became more cost-
effective (ICERs < $844/DALY averted) and switching from
80% LLINs to 80% IRS would now be cost-effective. The
same trends held when IRS cost 20% more and LLINs cost
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TaBLE 2
Number of additional malaria episodes, deaths, and DALYs averted by increasing coverage or changing intervention campaigns by region

in Mozambique

Northern region

Central region Southern region

Additional Additional Additional
episodes Additional Additional episodes Additional Additional episodes Additional Additional
averted* deaths avertedt DALYs averted* averted” deaths avertedt DALYs averted* averted* deaths avertedt DALYs averted*
Comparator: continue baseline of 80% IRS
Increase to 106 7 3.9 292 10 6.5 519 15 8.9
100% IRS
Change to 42 1 0.9 737 26 16.6 -195 -6 -3.8
80% LLIN
Change to 170 9 5.5 1,330 45 28.7 336 7 5.0
100% LLIN
Comparator: continue baseline of 80% LLINs
Increase to 124 7 4.0 536 18 11.8 431 15 8.5
100% LLIN
Change to 30 2 1.2 -462 -18 -10.9 689 24 13.5
80% IRS
Change to 123 9 5.0 -124 -4 -2.3 1,094 35 20.4
100% IRS

DALY = disability-adjusted life-year; IRS = indoor residual spraying; LLIN = long-lasting insecticidal net. Negative values imply additional cases, deaths, or DALY's; Scenarios maintain current

insecticide resistance and LLIN usage rates in each region.
*Per 1,000 persons.
1Per 100,000 persons.

20% less, switching from LLINs to IRS was only cost-
effective with 100% IRS coverage (ICER $927/DALY averted).
In the central and southern regions of Mozambique, cost-
effectiveness trends were unchanged, regardless of LLIN
and IRS cost (+20%).

Impact of LLIN usage. Figure 4 and Table 4 show impact of
LLIN usage in the northern and southem regions. When LLIN
usage was lower, more gains (additional episodes averted)
were accrued when switching to IRS (Figure 4B and D),
whereas when LLIN usage was high, more gains were
achieved by increasing LLIN coverage to 100% (Figure 4).
Thus, with higher LLIN usage rates, the value of switching to
an IRS campaign decreased and the cost-effectiveness of

TaBLE 3

Economic outcomes (ICER and cost per additional episode
averted) over 3-year campaigns from the government perspective
(all direct costs) by region in Mozambique

Northern region  Central region  Southern region

ICER
Comparator: continue baseline of 80% IRS
Increase to 100% IRS 114* Dominant Dominant
Change to 80% LLINs Dominant  Dominant  Dominated
Change to 100% LLINs Dominant  Dominant Dominant
Comparator: continue baseline of 80% LLINs
Increase to 100% LLINs Dominant = Dominant Dominant
Change to 80% IRS 2,008t Dominated Dominant
Change to 100% IRS 594* Dominated  Dominant
Cost per additional episode averted
Comparator: continue baseline of 80% IRS
Increase to 100% IRS 4.2 -2.3 -3.9
Change to 80% LLINs -69.3 -10.1 NA
Change to 100% LLINs -19.4 -8.0 -12.4
Comparator: continue baseline of 80% LLINs
Increase to 100% LLINs -2.5 -5.5 -5.1
Change to 80% IRS 82.4 NA -2.5
Change to 100% IRS 28.7 NA -2.7

ICER = incremental cost-effectiveness ratio; IRS = indoor residual spraying; LLIN = long-
lasting insecticidal net; NA = intervention did not avert any additional cases compared
with baseline. Scenarios maintain current insecticide resistance and LLIN usage rates in
each region.

*Highly cost-effective.

1Not cost-effective.

LLINs increased (Table 4). When LLIN usage was higher, the
benefit of switching to IRS decreased (cost-effectiveness
decreased compared with scenarios with lower usage rates).
Higher LLIN usage also increased the cost-effectiveness of
switching from IRS to LLINs. This is especially evident in the
southern region, where an 80% LLIN campaign would be
less costly and more effective (i.e., dominant) than 80% IRS
with a 60% LLIN usage rate, but would be more costly and
less effective (i.e., dominated) with a 35% LLIN usage rate
(Table 4). Figure 4A and B and Table 4 also show what
would happen with a substantial decrease in LLIN usage
(from 65% to 35%) in areas of high transmission and high
resistance (e.g., northern region). Under those conditions,
switching from IRS to LLINs was never cost-effective.

Impact of resistance. As insecticide resistance is on the
rise, we evaluated the impact of increasing the current vector
resistance to pyrethroids in the central region (which is
currently at a medium level), while holding all else constant.
While maintaining an LLIN coverage of 80% (60% usage),
increasing resistance from medium to high led to 99 addi-
tional episodes per 1,000 persons (3 DALYs/1,000 persons
and 5 deaths/100,000 persons), generating an additional
$706 in direct health-care costs and $771 in productivity
losses. Despite this increase in the malaria burden, switching
from LLINs to IRS (nonpyrethroid) was still not cost-effective.
With a baseline of 80% IRS, switching to LLINs at either
coverage level remained economically dominant.

In a high-transmission setting, increasing resistance
reduced the effectiveness of LLIN campaigns (per 1,000
persons there would be approximately four more episodes,
accruing five additional DALYs, and $259 and $1,289 in
additional health-care costs and productivity losses,
respectively). Switching to 80% IRS from 80% LLINs was
still not cost-effective.

DISCUSSION

In Mozambique, increasing coverage of either IRS or LLINs
was always cost-effective and in some cases increasing
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age; and (D) southern region with a baseline of 80% LLIN coverage.

coverage of LLINs would be cost saving (i.e., would save
costs in addition to averting DALYs). Our results show that
one can usually justify increasing coverage by at least 20%
(as in our modeled scenarios), but may vary for smaller
increases (e.g., 90-95%). Our results vary by region,
reflecting differences in malaria transmission, seasonality,
current/historic interventions, and current resistance pat-
terns and levels. In general, between the two interventions,
LLINs were usually more efficacious and cost-effective
except where LLIN usage was low, such as the southern
region of Mozambique (35% usage). Increasing resistance
to the insecticide used in LLINs decreased their effective-
ness and thus increased the cost-effectiveness of IRS;
however, LLINs were still better under modeled conditions.
Thus, our results show that more tailored approaches are
necessary to account for the heterogeneity of malaria epide-
miology, even within a country.

Although LLINs tended to be more cost-effective, this
does not necessarily suggest that LLINs should replace IRS
in all cases. There is a great deal of social and institutional
inertia that should be considered before changing the com-
mon practices. In particular, there are two factors in the
presence of which IRS may still be more prudent. The first is

low LLIN usage. Low LLIN usage may hinder even success-
ful LLIN distribution campaigns if the population is not fully
on board or are reluctant to change/use.'*'® A situation
such as this may call for a behavior change campaign. IRS
deployment in this context could serve to protect the
population until such a time when they make more use of
owned LLINs, if community acceptance of IRS is satisfactory.
The second is high resistance against pyrethroids, especially
since LLINs exclusively use pyrethroid insecticides. The use
of nonpyrethroid insecticides and their spray rotation may
help to reduce or delay vector resistance to these insecti-
cides.'2° Hence, other considerations also need to be take
into account when tailoring approaches and planning malaria
operation campaigns. Additionally, IRS acceptability should
be considered as successful spraying programs rely on high
compliance. Studies show people have mixed feelings about
IRS and acceptability has been noted to be related to per-
ceived benefits in the reduction of mosquitos, nuisance-
biting, and malaria.?'~2* However, a study in Mozambique
found IRS to be broadly acceptable even at low levels of
perceived efficacy based on a sense of citizenship.2®

Our study highlights the importance of surveillance of
LLIN usage and appropriate use. However, with constrained
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TaBLE 4

Impact of LLIN usage on the ICER in the northern and southemn regions
of Mozambique from the government perspective (all direct costs)

Campaign

80% IRS 100% IRS 80% LLINs 100% LLINs

Northern region
Comparator: continue baseline of 80% IRS

35% usage - 205t Dominated Dominated
65% usage* - 114t Dominant Dominant
80% usage - 348t Dominant ~ Dominant
Comparator: continue baseline of 80% LLIN
35% usage 1581 1581 - 30t
65% usage* 2,008% 594+ - Dominant
80% usage  Dominated 1,319 - Dominant
Southern region
Comparator: continue baseline of 80% IRS
35% usage* - Dominant Dominated Dominant
60% usage - Dominant Dominant = Dominant
Comparator: continue baseline of 80% LLIN
35% usage®* Dominant Dominant - Dominant
60% usage  Dominated 1,212 - Dominant

ICER = incremental cost-effectiveness ratio; IRS = indoor residual spraying; LLIN = long-
lasting insecticidal net.

*Current LLIN usage rate in region.

tHighly cost-effective.

1 Not cost-effective.

resources, it would be imperative to get a handle on LLIN
usage rate as this is a major variable that impacts the value
and effectiveness of LLIN campaigns. Not knowing the
usage rate of LLINs in a region can substantially hamper
the success of an LLIN distribution campaign. Having a
sense of the usage rate given LLIN access can help program
planners and decision-makers make appropriate decisions
about intervention campaigns and implementation. Where
appropriate usage is low, education programs should
accompany LLIN distributions to ensure proper usage and
promote good practices.’®?® Improper use of nets and
human behavior may reduce their efficacy and duration of
protection.?”~2° In addition, our study shows the importance
of monitoring insecticide resistance. The value of LLINs
decreases with increasing resistance intensity. Without proper
monitoring, LLIN campaigns may be inappropriate for malaria
prevention and may put persons at higher risk. Additionally,
further research and development is needed on other insecti-
cides for use on nets. This could increase LLIN effectiveness
while decrease the possibility for progressive development
of resistance.

Our study illustrates the usefulness of models in determin-
ing the effects of decisions. Modeling and simulation can
serve as virtual “policy laboratories” for public health officials,
policy makers, and funders, and enables us to practically
evaluate questions at hand. This in turn could save them
considerable time, effort, and expense that trial and effort
would bring. Modeling malaria intervention campaigns can
determine potential impacts, benefits, and modifications.
Additionally, removing or changing an intervention in the real
world may be unethical by putting people at risk; modeling
and simulation can overcome this problem and help fully
explore the impact of changing interventions.

Limitations. By definition, all models are simplifications
of real life,®" and as such cannot represent every event or
outcome. Our model assumes conservative assumptions
about the effectiveness of LLINs and optimistic assumptions
about IRS (i.e., IRS was modeled with Actellic CS, one of the

products with lowest documented resistance against its
active ingredient). We assumed that all patients with severe
disease were hospitalized and that patients with uncompli-
cated episodes were not. Additionally, we did not account
for mortality from severe disease outside of the hospital. We
also did not include any pre-referral treatment costs for
those who may seek care at a lower level prior to hospitali-
zation. We did not directly account for compliance with drug
treatment due to variations depending on treatment drug
and course and lack of reliable data. Model input data
came from various sources of differing quality and was
supplemented by expert opinion; thus, our results may be
refined as more data become available. As our models were
calibrated and populated with data specific to Mozambique,
our results may not be generalizable outside of this country,
unless other regions have similar malaria burdens and
transmission patterns.

CONCLUSIONS

Our simulation results show that LLINs were more cost-
effective than IRS in the northern and central regions of
Mozambique, and that it is worth considering prioritizing
LLIN coverage and use. However, despite being less cost-
effective, IRS may have an important role in insecticide
resistance management and control of epidemics. Malaria
intervention campaigns are not a one-size-fits-all solution,
and tailored approaches are necessary to account for the
heterogeneity of malaria epidemiology, even within a country.
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