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Abstract. Data generated during the course of research activities carried out by the International Centers of Excel-
lence for Malaria Research (ICEMR) is heterogeneous, large, and multi-scaled. The complexity of federated and global
data operations and the diverse uses planned for the data pose tremendous challenges and opportunities for collaborative
research. In this article, we present the foundational principles for data management across the ICEMR Program, the
logistics associated with multiple aspects of the data life cycle, and describe a pilot centralized web information system
created in PlasmoDB to query a subset of this data. The paradigm proposed as a solution for the data operations in the
ICEMR Program is widely applicable to large, multifaceted research projects, and could be reproduced in other contexts
that require sophisticated data management.

INTRODUCTION

Success in life sciences research depends on the ability to
properly manage, integrate, and interpret complex data sets.1

The International Centers of Excellence for Malaria Research
(ICEMR) Program is a global network of 10 independent
research Centers in malaria-endemic settings in 19 countries
spanning Latin America,2 Africa,3 Asia4 and the Pacific.1 As
each center is meant to have a regional focus, some conduct
research in more than one country. In addition to research pro-
jects carried out by individual centers, opportunities for collabo-
ration across the network exist and are encouraged. The ICEMR
Program aims to understand the epidemiology, pathogenesis,
and transmission patterns of malaria in different geographic
regions. Data generated by the ICEMR Program during the
course of the research activities are heterogeneous and multi-
scaled.2 For example, ICEMRs are employing an array of study
designs including active, passive and reactive case detection,
matched case–control, longitudinal and control intervention
studies, entomological surveys, spatial analyses, as well as labora-
tory studies employing a variety of molecular markers. The
ICEMR data management setting consists of a federation of
independent information systems, central repositories, and pro-
cedures to enforce best practices with regards to data capture,
analysis, exchange, and persistence (Figure 1). Such complex
datamanagement operations require consideration of1 standards
for collecting and managing data,2 ethical issues of consent and
privacy,3 quality assurance (QA) and quality control (QC) of
data,4 software quality attributes5 security and authentication,6

research operations and analysis needs, and7 transition to a post-
project state of data access and preservation.3,4

Stewardship of data is intended not only to support concom-
itant research activities, but also to support the development
of future analyses. To ensure wider dissemination of ICEMR
data, close interactions have been established with the relevant
National Institutes of Health (NIH)–funded bioinformatics
resources including VectorBase (the functional genomic resource

for vectors of eukaryotic pathogens, including Plasmodium) and
PlasmoDB (the functional genomic resource for Plasmodium
parasites).5,6 Coherent data capture, organization, processing,
and preservation will ensure that the ICEMRs are productive
beyond the context of initial collection and analysis, thanks to
a controlled flow of data channeled through appropriate pro-
cedures and devices.7 This article highlights the collaborative
process that developed systems and procedures to 1) perform
this global research program, 2) manage and analyze the data,
and 3) share invaluable malaria research data and results to
help achieve malaria elimination.

ICEMR DATA MANAGEMENT

Data collection and data capture. The ICEMR Program
was implemented during a period of rapid advances in electronic
data capture (EDC) technologies and methods for remote and
low-resource settings. EDC has several potential benefits over
data collection onto paper forms including 1) reducing the risk of
lost paper records, 2) eliminating the delay to enter data from
paper forms, 3) reducing the number of staff required for data
entry, 4) enabling immediate data quality checks and preliminary
analyses, 5) enabling immediate redundant data backups when
entered into enabled databases, and 6) providing state-of-the-art
training to field and data staff.
It should also be noted that EDC also poses potential prob-

lems such as systematic errors originated in software, risk of
failure of electronic devices, and an increased skill set required
to run a data operation as compared with paper-based forms.
A poll of the ICEMR data core staff revealed common bar-
riers to full implementation of EDC, many of which reflect
the fact that ICEMR projects are typically located in low-
resource, remote settings throughout the world. These barriers
include unreliable electricity, low-bandwidth internet connec-
tions, unreliable cellular connections, hardware expense, lack
of trained personnel, lack of on-site technical support, lan-
guage differences, complexity of EDC field training/oversight,
and in at least one ICEMR (Colombia) the safety of field
operators is compromised by the use of Global Positioning
System (GPS)–enabled devices as they could be perceived
as military targets by guerrillas. Furthermore, some ICEMRs
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report that filling out paper forms/log books can be easier and
be perceived as faster than using electronic screens or key-
boards. All ICEMRs currently use some paper forms for
informed consent documentation and as a backup in cases of
electricity or cellular outage. Although ICEMR databases are
securely backed up locally and/or in distributed web-based
environments, electronic data continue to have limits in these
research settings. As noted by one ICEMR utilizing EDC and
a web-based database, storing data in a web-based database
greatly enhances study collaboration; however, data cannot
be entered or accessed when data connectivity is disrupted at
the field site bringing the data operations core to a halt. The
continued development and improved electronic infrastruc-
ture (including enhanced cellular and cellular data coverage)
at these sites over the remaining years of the ICEMR may
further enable or enhance ongoing efforts to streamline data
capture methods.
As of 2014, five of 10 ICEMRs have implemented EDC

using tablet, cellular phone, or computer hardware, primarily
using the Open Data Kit (ODK; opendatakit.org) software to
direct the captured data into Research Electronic Data Capture
(REDCap), MS Access, or custom databases. The remaining
ICEMRs use hybrid methods, combining paper collection and
EDC. For example, field data collection where cellular con-
nections are inadequate are manually entered into REDCap
databases by data entry staff while laboratory results are
directly entered into the databases at the Internet-connected
research facilities.
REDCap is a web application in use by a number of

ICEMR centers that lets investigators easily design and
manage databases for research studies. REDCap features
flexible and user-friendly tools for designing online data

entry forms, controlling user access, auditing user activity,
importing files and data, and exporting data as Excel or
PDF files or preformatted for statistical packages such
as SPSS (IBM Corp., Armonk, NY) and R (R Develop-
ment Core Team, Vienna, Austria). It is available free of
charge on joining the REDCap Consortium (http://project-
redcap.org/), a global network of institutions that use the
application. Data can be transcribed from paper forms to
online REDCap data entry screens by designated data entry
personnel; alternately, REDCap can be paired with ODK
software to allow field workers to capture data directly to
mobile devices, for subsequent upload to a REDCap data-
base. ODK is an open-source set of tools complementary to
REDCap, which focuses on mobile data collection solutions.
Data captured via ODK is usually imported into REDCap for
consolidation of records.
As an illustration of data collection, the Malawi ICEMR

used different procedures at different times and in different
studies, according to the needs and capacity of the research.
The initial cross-sectional surveys used paper-based data col-
lection as outlined here:

1. Informed consent was collected on paper.
2. Demographic data were collected on paper with sticker

barcodes linked to blood samples collected. The paper also
recorded interview status, entomological collections, and
clinical data including temperature and hemoglobin.

3. Paper logs were kept for all thick smear and polymerase
chain reaction (PCR) malaria test results.

4. Paper-based data were entered by a data entry clerk online
into REDCap using a laptop or desktop computer. The
PCR and thick smear results entered were reviewed inde-
pendently by another person. This review process is still
in the process of being formalized.

Subsequent Malawi ICEMR cross-sectional surveys, case–
control studies, and cohort studies used a hybrid data collec-
tion method, using paper forms where needed and tablets or
laptops to capture the majority of data. Data were transferred
using ODK to online and offline REDCap databases. The
following example helps to illustrate the complexity of EDC
in remote settings:

1. Collect informed consent on paper.
2. EDC using tablets or laptops for all household and indi-

vidual interviews, screening data, logging of specimen col-
lection, environmental records, entomological forms, GPS
coordinates for each household, and laboratory results.

3. Transfer data using ODK into REDCap databases. In
some sites with unreliable internet connectivity, data were
exported as an encrypted copy to a thumb drive every day
and transported by car to the data center for uploading.

Ethical practices. Serious consideration must be given to
ethical issues when designing and implementing informa-
tion systems to support research involving human subjects.
Research funded by the NIH is subject to laws governing
ethical conduct of research, under the oversight of the U.S.
Department of Health and Human Services. The conceptual
framework to which institutional review boards are bound
is rooted in the Belmont Report,8,9 according to which the
driving principles of ethical research are 1) respect for persons
(courtesy, respect, and transparency with patients, resulting

FIGURE 1. Data management for a complex project such as the
International Centers of Excellence for Malaria Research (ICEMR)
Program should consider all phases in the life cycle of data, even after
the project has ended. This graph illustrates the comparative amount
of energy one might allocate to each phase, and is based on estimates
from a single ICEMR (non-Amazonian Latin America). Specifically,
“capture” refers to information collection, “storage” refers to the
physical and digital repositories that contains the information, “quality
control” refers to the procedures in place that guarantee integrity of
the data, “permissions” refer to mechanisms in place to restrict access
to information, “analysis” refers to pipelines for quantitative analysis
of the data, “exchange” refers to processes that allow data to be
shared, and “transition” refers to processes in place to ensure that
data and analysis pipelines are available after the research projects
have finished.
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in informed consent), 2) beneficence (“do no harm”), and
3) justice (reasonable, nonexploitative, and fair conduct of
research). This framework is regulated in the United States
by the Title 45, Part 46 of the Code of Federal Regulations
(45 CFR 46).10

The ICEMR Program is implemented in international
and often low-income settings. The same safeguards that
prevent patient data from being misused are in accordance
with the principles of respect, beneficence, and justice that
all research funded by U.S. federal dollars must comply
with. Furthermore, we believe all human subjects’ research
should provide a level of protection of patient data to the
highest standards possible. However, since most countries
in which malaria research is conducted do not have the same
level of regulation and enforcement of patient privacy as the
United States, we consider that the standards of privacy for
the ICEMRs must be equal or superior to those available in
the United States.
Although existing regulations provide guidance, they do

not provide clear operational guidelines for the implemen-
tation and use of information systems in international set-
tings. All ICEMR studies comply with 45 CFR 46, ICH GCP
E6, FDA 21 CFR Part 11, NIH Clinical Terms of Award,
and International Review Board–approved protocols. Some
of the ICEMRs have also adopted relevant portions of
the U.S. Health Insurance Portability and Accountability
Act of 1996 (HIPAA) to non-U.S. settings as guidelines
to operationalizing data protection procedures. Specifically
portions of the Privacy and Security Rules of Title II, known
as the Administrative Simplification Provisions (ASP) have
been adopted. The Privacy Rule establishes regulations for
the use and disclosure of Protected Health Information,
which includes information about health status, provision of
health care, or payment for health care that can be linked
to an individual. The ASP Privacy Rule states that research
teams must 1) inform individuals about privacy policies, 2) dis-
close information to individuals on request, 3) provide a
mechanism for individuals to make corrections to their infor-
mation, 4) take reasonable steps to ensure confidentiality
of communication, and 5) designate a privacy official and
contact information. The Security Rule defines three types
of security safeguards: 1) administrative: manuals, roles,
training, third parties, contingency, internal audits; 2) physical:
hardware and software management, access, facility, security
plan, policies for workstation use, third party’s physical access;
3) technical: encryption and firewalls, audit trail, data corrobo-
ration, authentication, documentation, configuration, and risk
management plan.
Once the data in the ICEMRs databases are exported to

public repositories, additional safeguards apply. PlasmoDB
(described in the Data Sharing/Central Database section
below), as part of a National Institute of Allergy and Infec-
tious Diseases (NIAID) Bioinformatics Resource Centers,
has to comply with National Institute of Standards and
Technology (NIST) SP 800-37, Guide for the Security, Cer-
tification and Accreditation of Federal Information Systems
and NIST 800-53, Recommended Security Controls for Fed-
eral Information Systems.
The regulations cited above for the protection of medical

information are specific to the United States, since it is the
source of funding for the ICEMR projects, but we acknowl-
edge the existence of additional frameworks such as the 1995

Council of European Union Data Protection Directive that
provides clear directives for the capture, processing, and
movement of personal data. Developing nations have started
to produce similar legislations, for example, India’s Informa-
tion Technologies (Reasonable Practices and Procedures and
Sensitive Personal Data or Information) Rules, 2011. This is
a welcome trend, as we recognize that regulations devised for
high-income countries may not always be the most appropri-
ate for lower income countries. In case of competing regula-
tions, the ICEMR Program has opted to adopt the stricter
standard between the country where research is conducted
and the country where the research funds are originated.
Structured procedures. The success of a project depends

absolutely on the integrity and quality of the data captured.
Perhaps the most important aspect of data capture is the use of
standard operating procedures (SOPs), that is, step-by-step
written instructions to complete data acquisition, QC, analysis,
exchange, and/or transition.11 Ideally every SOP should include
1) definition of inputs, 2) stipulation of execution responsibil-
ities, 3) time frame for execution, and 4) expected outcome.
ICEMR projects have developed SOPs that cover all aspects
of ICEMR data management including the following:

Privacy and data security: tiered data access, data audit con-
trols, data sharing, HIPAA Privacy Rule, HIPAA Security
Rule, GPS data management

Data collection: data collection procedures, smartphone data
transfer, development and maintenance of SOPs, case report
form design, data dictionary

Sample and data integrity: storage of paper case report forms
(CRFs), database changes, barcoding, QC for case report
forms, QC for samples, database configuration manage-
ment, backup and recovery, tablet and laptop management,
uploading and synchronizing data with REDCap server, data
cleaning, initiating and logging into offline REDCap

Data analysis and reporting: building analysis pipelines, test-
ing analysis pipelines, data exchange, reporting

A collection of representative SOPs showcasing proce-
dures from multiple ICEMRs as well as a complete master
data management plan that includes SOPs, architectural
considerations, and roles and responsibilities of the person-
nel required to run a data core have been included in the
Supplemental Material.
Quality assurance and quality control. The most generic,

reusable, and important SOP is the one related to QA and QC.
We define QA as a set of processes and safeguards to “prevent”
data errors, including consistent checks of data integrity, com-
pleteness, and correctness. We define QC as a set of processes
intended to “mitigate” or “eliminate” the impact of errors that
have occurred during data capture and/or processing and
that were not prevented by QA procedures. QC requires peri-
odic tasks (e.g., weekly for data, daily for analysis) conducted
throughout the duration of the ICEMR projects. Particularly,
QC includes the process of continuous improvement of QA,
so that past errors are prevented from recurring.
There are numerous strategies and methods for QC, which

one to use depends on the situation at hand. The baseline for
QC is error detection. In the simplest case, the error present
in a data set is an independent and identically distributed
random variable (a SOP for the QC of a random variable
is explained in the Supplemental Material). A random QC
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sample contains an amount of errors proportional to the over-
all number of errors in the data universe. When errors are
found during QC, they are corrected and a new random QC
sample is selected without replacement. Every time that this
process takes place, the overall rate of error is reduced.
Therefore, by repeating the QC process several times, it is
possible to reduce the overall error to a threshold of accept-
able error (note that the threshold of acceptable error could
be zero). This protocol for QC provides a simple and effective
method to guarantee that overall errors remain under certain
threshold. However, there are special cases that deviate from
this simple paradigm, for example, systematic errors because of
instruments or operators, which result in error bias. In those
cases, a systematic process of QC can be defined in a similar
way as it was done here for the general simplest case.
Software quality attributes. There is an essential need for

quality in the software implementations that support the
mission of the ICEMRs. The operation of each ICEMR
depends on a reliable and effective set of information sys-
tems to manage all aspects of the projects, from accounting
to molecular biology. All these systems need to exhibit a
series of attributes without which quality of information
cannot be guaranteed. These considerations are independent
of QA and QC. Among the most important attributes all
ICEMR systems have to exhibit are “availability”, that is,
the proportion of time a system is in a functioning condition;
“scalability,” that is, the ability of a system to handle grow-
ing amounts of data and use; “maintainability,” that is, the
ability of a system to make future maintenance and adapt-
ability easier; “performance,” that is, the ability of a system
to react in usable times; “security,” that is, the ability of a
system to evade unauthorized use, breach of confidential infor-
mation, denial of service attacks, repudiation (transactions
performed by users who later deny their actions), and integrity
compromise (unauthorized manipulation of data resulting in
loss of integrity); “modifiability,” that is, the extent to which
software can be modified after its initial deployment; “test-
ability,” that is, the extent to which the systems can be tested
for proper function; “traceability,” that is, extent to which func-
tionality in an information system can be traced back to a
requirement; “reusability,” that is, extent to which the systems
can be redeployed and reused in different contexts.12

Reproducibility. Replication of results is the cornerstone
of science. However, with increasingly complex systems and
computational methods, the likelihood of human-introduced
errors and/or systematic errors has increased significantly.13–15

Among the best practices to ensure reproducibility of results,
we particularly considered the following:

Prevent manual data handling: all analyses are scripted to
minimize human error by fully automating the pipeline from
database to publication quality graphics and tables. The
QA/QC for analysis has a SOP that involves the following
script tests to mitigate the risk of systematic errors origi-
nated in software development and/or black boxes: 1) unit
test: conducted by analysts during development; this tests
checks that individual components of an analysis pipeline
work as expected. (ii) Integration test: Conducted by ana-
lysts at the end of an analysis task; this test checks that
individual components of an analysis pipeline do not cause
overall failure. (iii) Regression tests: Automated daily test
that checks the validity of all analyses; this test checks that

analysis pipelines run and produce results as expected
even after changes are made.

Archive versions of all tools used: each software tool that we
use has multiple versions with differences in functionality,
in many cases differences in protocols, and in some cases
differences in software bugs. Once an analysis is used in a
publication, a snapshot version for all systems used, and all
data files produces, and all related source code is archived
for possible future reference.

Exercise version control of source code: all source code is
versioned with source control systems. The source control
systems are then part of incremental backups. Once an anal-
ysis script is used in a publication, a branch is created in
the source code repository to account for variations in all
associated scripts that might be required by review processes,
which might cause divergence from ongoing progress in
these scripts.

Store intermediate steps: all intermediate files are named with
unique identifier that permits identification of the specific
analysis to which they belong (including versioning). This
facilitates identifying what result files need to be archived.

Provide source code for analysis as part of publications: in
every publication in which an analysis script is used, the
source code, when appropriate, is submitted as part of sup-
plemental materials.

ICEMR METADATA

The complexity and heterogeneity of ICEMR data with
respect to origin, type, and format necessitates accurate and
comprehensive metadata collection. By metadata, we are
referring to the aggregate of all the information associated
with the sample being collected. For example, time and space
attributes (collection date, region, country, GPS coordinates),
clinical attributes (health status, pregnancy), and genetic attri-
butes (PCR results, presence/absence of drug resistance muta-
tion) all constitute descriptive metadata associated with a
single sample. Well-structured data and consistent representa-
tion of metadata are needed for accurate data integration and
cross-study analyses. The two main challenges in capturing
standardized metadata are 1) knowing what minimum infor-
mation should be captured for malaria studies, such as age of
study subject, species of parasite or vector samples collected,
geographic location and time of sample collection, clinical pre-
sentation, and types of assays performed and 2) what values
and data format should be used for consistent representation,
for example, numerical versus alphabetical values, milligram
versus microgram measurements.
To address these two issues, representatives of various

ICEMR groups collaborated to develop a common minimal
data dictionary, which includes a list of metadata fields and
attributes. The data dictionary was established by reviewing
ICEMR data sources (including case study and collection
forms) and identifying the data fields that are important for
studying epidemiological patterns of malaria, interaction of host
and parasite, and associations of genotype and phenotype. The
following broad categories were identified as important for
guiding the capture of metadata:

Study type
General information of study subject, such as age, gender
Sample collection date and location
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Relevant clinical phenotypes such as fever and other symptoms
Parasite detection assays and results
Molecular assays and results

Name, description, allowed values, and data format for each
metadata field were specified in the data dictionary.
Recognizing that each ICEMR will have study-specific ter-

minology and metadata, we relied on established ontologies
(a set of defined terms and relations between them) to sup-
port consistent representation of data for cross-ICEMR data
analysis. Specifically, we used the Ontology for Biomedical
Investigations (OBI), which is one of eight official components
of the Open Biological and Biomedical Ontologies (OBO)
Foundry (http://www.obofoundry.org/). The OBO Foundry
provides a set of interoperable ontologies in biological and bio-
medical domains, which were developed following a common
design and philosophy using a common upper level ontology
and a common set of relationships.16 OBI covers all aspects of
a biological and clinical investigation including design of an
investigation, biomaterials, instruments and protocols used,
data generated, and type of analysis applied to the data.17

OBI was used as the underlying semantic framework since
it can represent all aspects of an investigation and has been
used by other metadata standard.18 By mapping the mini-
mal ICEMR metadata to OBI/OBO terms, we were able to
represent metadata in a standard manner and reveal rela-
tions between metadata fields (Figure 2). The top section of
Figure 2 illustrates the type of investigation, such as a cohort
or a census study design. The middle section reveals that the
investigation has two parts: specimen collecting and assay.
The specimen collection occurs in a specific geographic loca-
tion (such as country, or shown as GPS data) and has inputs
and outputs. The input is the human who has qualities such
as age, sex, or symptoms (lower left section). The output of

specimen collecting is the specimen itself which in turn can be
an input of downstream assays (lower right).
Semantic representation of metadata allows us to easily

evaluate whether the data dictionary captures all the impor-
tant metadata needed for the intended use. In addition, the
use of ontologies enables harmonization between ICEMR
metadata and those from other standards in particular the
NIAID/Genome Sequencing Centers for Infectious Diseases
(GSCID)/Bioinformatics Resource Centers (BRC) standard.18

Using a common framework enables effective data compari-
son between diverse groups and regions and facilitates data
integration from/to other resources. The ICEMR metadata
cover all required metadata specified in the NIAID/GSCD/
BRC Sample Application Standard.
To facilitate ICEMR data submission and incorporation into

PlasmoDB, a metadata collection form (Excel format) (Sup-
plemental Table 1) was created based on the data dictionary.
Descriptions of each metadata field were added in the sub-
mission form including information about the allowed values
(including ontology terms) for any given field.

DATA SHARING/CENTRAL DATABASE

The NIH expects the timely release and sharing of final
research data from NIH-supported studies for use by other
researchers, as specified in the NIH Statement on Sharing
Research Data (NOT-OD-03-032). Investigators submitting
an NIH application seeking $500,000 or more in direct costs
in any single year are expected to include a plan for data
sharing. Each of the 10 ICEMRs has submitted a Data Shar-
ing Plan that was approved before funding. The time frame
for release and sharing of data is no later than the acceptance
for publication of the main findings from the final data set.

FIGURE 2. Ontology-based representation of the International Centers of Excellence for Malaria Research (ICEMR) metadata. The data col-
lected in the minimal ICEMR submission form are in thick bordered shapes. Metadata are classified into material (round-cornered rectangles),
information or quality (rectangle), or process (oval) entity. Italicized text represents relations. The ontology terms are indicated by using ontology
name abbreviations as a prefix: IAO (Information Artifact Ontology), OBI (Ontology for Biomedical Investigations), PATO (Phenotypic quality
Ontology), NCBITaxon (NCBI organismal classification).
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As the ICEMRs are ongoing, not all the data produced
has been made available yet; however, the collaboration
with PlasmoDB was designed expressly to encourage and
facilitate sharing not only across the ICEMRs but with the
wider research community.
To facilitate mining of data generated by the ICEMRs,

PlasmoDB has developed an ICEMR-specific web interface
that enables ICEMR researchers to query their data. Since
collected metadata have been standardized as described above,
ICEMR samples can be filtered and compared based on the
available metadata. Such filtering and comparison can be done
on samples from an individual ICEMR or from across the
10 ICEMRs. Experimental results available for the filtered
samples can then be analyzed. As a first iteration, antibody
array data from serum samples have been integrated into this
database. There are several advantages to this approach:

1. Filtering and comparing samples based on associated meta-
data such as disease status, age, geographic location, enables
both inter- and intra-ICMER analyses (Figure 3).

2. The intuitive graphical user interface available on PlasmoDB
allows for the identification of sets of results that are com-
mon between or unique to specific ICEMRs. For example,
reactive antigens from samples from infected adults can be
compared with samples from uninfected adults from the
Amazonia ICEMR, allowing one to define the set of anti-
gens that are either unique or in common with the east
African ICEMR (Supplemental Figure 1).

3. The interface provides a visual and graphical mechanism
for reviewing the data for QA/QC.

4. ICEMR data can be searched in the context of all other
data available in PlasmoDB, including expression data
(transcriptomic and proteomic), population diversity data,
metabolic pathways, and so on. This process also enables
the ICEMR projects to access the larger Bioinformatics
Resource Center mechanisms. For example, searches in
PlasmoDB can be used to identify genes (antigens) with
increased immunogenicity based on available metadata
followed by defining the subset of these genes that are
under diversifying selection (containing a high number of

FIGURE 3. Screenshots from the International Centers of Excellence for Malaria Research (ICEMR)–specific PlasmoDB site. (A) Access to
the antibody array data is achieved by clicking on the “ICEMR Serum Antibody Levels” link under the host response category on the
PlasmoDB homepage. (B) The antibody levels form allows the selection of samples to compare with each other based on their metadata.
(C) The geographic location filter allows selection of samples based on their geographic origin.
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non-synonymous mutations) based on isolate sequencing
data (Figure 4).

DISCUSSION

Data management is a common cornerstone across ICEMR
projects. The role of data managers goes beyond that of
simple technology operators; it is a role more akin to a chief
technology officer, that is, an actor that can provide valuable
information to make strategic decisions that affect the success
of a project. Data management has to be taken into consider-
ation before data capture, during execution of protocols and
during analysis and communication of results.
Identification of data commonalities and associated mapped

ontologies among the diverse settings and research data types
contained within the spectrum of ICEMR site investigations
presents significant opportunities for “in-silico” exploratory
research. Cross-ICEMR comparisons of identified statistical
associations can add to the significance of scientific findings
through evidence demonstrating reproducibility of results in
other geographic settings, or by allowing agglomeration of data
for use in meta-analysis techniques. Examination of emergent
properties or effect modification or interaction between set-
tings or subject characteristics that differ at the level of geo-
graphic sites become possible with aggregation of related
structured data across the global settings contained within the
10 ICEMR sites.
Perhaps the most important aspect of data management is

to ensure the quality and consistency of data that are used in
analysis and subsequently reported to broad audiences (scien-
tific community, government, and practitioners). To achieve
this desired level of quality, analyses have to be integrated
with the procedures of data management, which is conducive
to having automated pipelines for analysis. This, however,
requires the buy-in from principal investigators and researchers
consuming data. A common situation occurs when researchers
ask data managers to provide data to conduct analyses that
involve massaging data and unscripted actions (i.e., use of
menus in analysis software packages or manual file alter-
ations); this is problematic because data corrections as a
result of QA/QC procedures are common, and manual steps
have to be reproduced at every change. Automated pipelines
of analysis involve the input of the researchers, mediated by
the quality provided by data managers. We have implemented
the ideal case in which analyses conducted in PlasmoDB are
shared strategies that support reproducible science through
providing the workflow used to generate a result that may be
cited in a publication (see Figure 3).

Data sets may be used decades after collection for unfore-
seen purposes using new technologies. For instance, data
collected between 1940 and 1963 at the Central State Hospi-
tal (Milledgeville, GA) and the NIH Laboratories (Columbia,
SC) representing survival time of patients treated for neuro-
syphilis with malaria therapy20 were used by Johnston and
others21 to produce a stochastic model of transmission inten-
sity in a community (represented by R0) from mechanistic
within-host principles. This use of data more than five decades
after collection was not foreseen by the patients or their care-
givers. Even though this particular data set predates informed
consent, we can anticipate future analogous broad use of
data being collected today; this is because that there are no
statutory rules regarding the length of informed consent.
Given the potential benefit of posterior analysis of current
data sets, some effort should be invested in ensuring that
data preservation allows such analyses in the future. Ethical
considerations in this regard are not a settled issue and are a
clear area of future work; ICEMRs have prepared for that
future by providing the highest standard available today to
patient’s data protection.
Significant investigatory opportunities arise from linkage

of multilevel classes of data contained within the ICEMR
investigations that range from environmental measures of cli-
mate, hydrology, and elevation to population characteristics,
residential characteristics, person-level exposures, mosquito
vector data down to serologic and molecular level data of
hosts, vectors, and parasites. Putative relationships and causal
processes can be explored over longitudinal datasets utilizing
such data without the significant costs of designing and
implementing studies specific to those questions. Of course,
this is true of any significant research database, but what makes
the cross-ICEMR databases unique is the breadth and depth
of the data at a global level. The utility of such databases to a
broad range of scientists is subject to its availability, ease of
use, and the tools that researchers use to access the data and
perform these exploratory analyses. Efforts are currently
underway to integrate ICEMR data and analysis into public
interfaces such as PlasmoDB and GenBank, such that they
will be accessible to the research community at large; these
efforts include considerations to share source code and
data dictionaries.
There are other efforts in the world of malaria research

that share commonalities with the ICEMR projects. At the
cellular and molecular level, MalarImDB22 offers aggre-
gated information about immunology and pathogenesis.
At the epidemiological level, the INDEPTH Network23

offers patterns for health and demographic surveillance

FIGURE 4. Screenshot from the current production PlasmoDB site depicting a search strategy that combines antibody array data results with
population data. Step 1 of the strategy defines genes (antigens) from infected children compared with infected adults.19 In step 2, results from
step 1 are intersected with a search that identifies all genes that contain genes with a at least five non-synonymous polymorphisms. This search
may be accessed at http://plasmodb.org/plasmo/im.do?s=2d611e1195d75ca7.
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systems across many sites in low- and middle-income coun-
tries; similarly, the Demographic and Health Survey24 offers
comparable nationally representative household surveys from
more than 85 countries. The link between molecular and
epidemiological data is bridged by the Malaria Genomic
Epidemiology Network25, a consortium of researchers from
21 countries addressing large-scale studies of genomic varia-
tion. Mapping and visualization of global patterns of malaria
is currently the focus of the Malaria Atlas Project26. This list
is not exhaustive, but it is representative of the data reposito-
ries available in the world of malaria research. The integration
of the ICMER data and other research initiatives is clear
direction for future research.
The federated data management operation mounted by the

ICEMR Program provides an example of a solid foundation
on which malaria elimination can be achieved. In addition, the
lessons learned and methods developed for data management
during the course of the ICEMRprojects are of ample applicabil-
ity, thus the benefit of this aggregated knowledge expands
beyond the field ofmalaria and outside the realm of research.
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