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Barcelona, Spain; 6Centro de Investigaç~ao em Sa�ude de Manhiça (CISM), Maputo, Mozambique; 7Catalan Institution for Research and

Advanced Studies (ICREA), Barcelona, Spain; 8Pediatrics Department, Hospital Sant Joan de D�eu, Universitat de Barcelona, Barcelona, Spain;
9Consorcio de Investigaci�on Biom�edica en Red de Epidemiolog�ıa y Salud P�ublica (CIBERESP), Madrid, Spain; 10Instituto Nacional de Sa�ude

(INS), Maputo, Mozambique

Abstract. The Countrywide Mortality Surveillance for Action platform is collecting verbal autopsy (VA) records from a
nationally representative sample in Mozambique. These records are used to estimate the national and subnational
cause-specific mortality fractions (CSMFs) for children (1–59 months) and neonates (1–28 days). Cross-tabulation of
VA-based cause-of-death (COD) determination against that from the minimally invasive tissue sampling (MITS) from the
Child Health and Mortality Prevention project revealed important misclassification errors for all the VA algorithms, which
if not accounted for will lead to bias in the estimates of CSMF from VA. A recently proposed Bayesian VA-calibration
method is used that accounts for this misclassification bias and produces calibrated estimates of CSMF. Both the
VA-COD and the MITS-COD can be multi-cause (i.e., suggest more than one probable COD for some of the records). To
fully use this probabilistic COD data, we use the multi-cause VA calibration. Two different computer-coded VA algorithms
are considered—InSilicoVA and EAVA—and the final CSMF estimates are obtained using an ensemble calibration that
uses data from both the algorithms. The calibrated estimates consistently offer a better fit to the data and reveal impor-
tant changes in the CSMF for both children and neonates in Mozambique after accounting for VA misclassification bias.

INTRODUCTION

In Mozambique, the Countrywide Mortality Surveillance for
Action (COMSA) platform provides continually updated sta-
tistics on mortality and cause of death (COD) for the country.
The goal is to conduct COD analyses stratified by age and
province level to inform the government of Mozambique and
other stakeholders. This is important for the nation’s public
health because Mozambique does not have a comprehen-
sive civil registration and vital statistics system.
Countrywide Mortality Surveillance for Action has imple-

mented a sample registration system (SRS) of births and
deaths, but accurately determining the COD is challenging
because many deaths occur outside hospitals. Countrywide
Mortality Surveillance for Action has trained Community Sur-
veillance Assistants (CSAs) deployed for interviews of fami-
lies of the deceased individuals registered in the SRS. The
CSAs conduct verbal autopsies (VAs), standardized series of
questions that establish the health history and signs and
symptoms of the fatal illness.1 These questionnaires can be
examined by physicians to establish a likely COD,2 but such
a protocol is costly and difficult to standardize. Instead,
computer-coded VA (CCVA) algorithms like InSilicoVA,3

InterVA,4 expert algorithm (EAVA),5 Tariff or SmartVA,6 and
naive Bayes classifier7 can be used to automatically infer COD.
Computer-coded VA data can be used directly to estimate

cause-specific mortality fractions (CSMFs; i.e., the proportion
of deaths attributable to a set of causes) at the population
level. However, the outputs of the CCVA algorithms are
merely statistical predictions and not definitive measurements.
Any biases present in individual-level COD predictions will be

propagated to the aggregated estimates (i.e., the population-
level CSMF).
In this manuscript, we conduct analysis to obtain CSMFs for

neonates aged 1–28days and children aged 1–59months in
Mozambique using the COMSA VA data. There are a priori
reasons to suspect the presence of large biases in the results
from CCVA algorithms used for the COMSA VA data. For
example, major CCVA algorithms have been trained on data
from the Population Health Metrics Research Consortium
(PHMRC). These data date to 2011 and were collected in
countries other than Mozambique. Due to varying causes of
disease and cultural differences in the communication underly-
ing the VA methods, the relationship between reported symp-
toms and underlying causes is likely substantially different
between the PHMRC data and the COMSA data. Accuracy of
CCVA is known to highly depend on the training data.8 This
means CCVA algorithms that might be accurate in the PHMRC
cohort may be quite biased in the COMSA cohort.
It has been demonstrated that biased CSMF estimates

from CCVA algorithms may be improved by incorporating
auxiliary data sources with more comprehensive COD infor-
mation for the purpose of calibration.9,10 Specifically, we use
a comparatively small set of data from the Child Health and
Mortality Prevention (CHAMPS) project collected in Bangla-
desh, Ethiopia, Kenya, Mali, Mozambique, Sierra Leone, and
South Africa.11 For deaths assessed in this project, a panel
of experts determines the COD/chain of events leading to
death using medical history and records of the terminal ill-
ness and post-mortem multiple pathogen screening and
biopsy pathology data using minimally invasive tissue sam-
ple (MITS) procedures.12 The CODs determined by the
CHAMPS process will be referred to as “MITS-COD,” recog-
nizing that use of MITS is an important addition to improve
the validity of medical certification of COD. The COD deter-
mination informed by MITS has been shown to be highly
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concordant with COD from full diagnostic autopsies.13 The
deaths studied by CHAMPS also have VA data, and it is possi-
ble to obtain the CCVA-predicted COD, henceforth referred to
as “VA-COD.” This paired dataset of MITS-COD and VA-COD
allows us to estimate the misclassification rates of the CCVA
algorithms in this cohort. Combining this evidence with the
raw COMSA CCVA results using a Bayesian algorithm as
implemented in the calibratedVA R package,14 we are able to
provide calibrated CSMF estimates that account for the mis-
classification of causes by the CCVA methods. In addition, we
provide results from an ensemble calibration algorithm that
combines the input of multiple CCVA algorithms.
The VA calibration procedure is simplest when the CCVA

and MITS autopsy results identify a single COD. However,
CCVA algorithms like InSilicoVA and InterVA may output
probabilistic predictions, suggesting multiple plausible CODs
with an assigned score. Ignoring this uncertainty in COD pre-
diction reflected in the multi-cause VA-COD output wastes
information. To understand this, when probabilistic predic-
tions are converted to single-cause predictions, a plurality
rule is used (i.e., the cause with the highest score is assigned
to be the VA-COD for that case). Therefore, a COD with rela-
tively low probability may be assigned as the definitive cause.
Additionally, for MITS results, many individuals are consid-
ered to have multiple CODs, including one underlying (the
one precipitating the chain of events ultimately leading to
death) and an immediate (the closest one to the fatal event)
cause. A single-cause analysis would only use the underlying
cause, missing important information on the causal chain of
illnesses leading to death.
Due to the multi-cause nature of both the VA-COD and

MITS-COD data, we implement a multi-cause procedure for
CCVA calibration as described by Fiksel et al.,9 which sensi-
bly incorporates multiple causes in both the VA and the
MITS results. This is accomplished through a novel generali-
zation of the notion of misclassification rates for multi-cause
data15 and by using a “generalized Bayes” estimation tech-
nique that replaces the full probability likelihood model with
the solution of an estimating equation incorporating a loss
function16,17 because the latter is easier to deal with for
multi-cause data.
Two different CCVA algorithms, InSilicoVA and EAVA, are

considered for the analysis, and the final CSMF estimates
are obtained using an ensemble calibration that uses data
from both the algorithms. We show that use of the multi-
cause COD output improves the sensitivities of both the
CCVA algorithms with respect to the MITS-COD. The cali-
brated CSMFs show significant differences from the uncali-
brated ones and offer substantially improved fit to the data.

MATERIALS AND METHODS

Overview of single-cause VA-calibration. To estimate
the prevalence of various CODs in Mozambique, we have
the results of VAs for 1,841 child deaths (aged 1–59months)
and 818 neonatal deaths. These autopsies are analyzed by
two CCVA algorithms of inherently different nature – InSili-
coVA,3 which assigns conditional probabilities of COD, and
EAVA,5 an algorithm that follows logical rules related to
reported signs and symptoms of the fatal illness to move
through a hierarchical decision tree to assign a COD.

To introduce the calibration procedure, we will begin by
assuming that one COD is identified by the algorithms. In the
case of InSilicoVA, this is accomplished by selecting a cause
by “plurality rule” (i.e., the COD with the highest predicted
probability). EAVA, by default, offers only a single COD.
Given these predictions from either of these algorithms, we
can estimate the CSMF with the sample proportions.
However, these uncalibrated CSMF estimates will exhibit

substantial bias due to systematic misclassification in the VA
predictions. For each pair of causes i,j (and a specific algo-
rithm, InSilicoVA, or EAVA), Mij denotes the rate that a sub-
ject with true COD i (as diagnosed by a more comprehensive
diagnostic procedure like MITS) will be predicted as having
COD j by the CCVA algorithm. If i5 j, thenMij is the probabil-
ity of a correct classification of an individual with condition i.
Otherwise, Mij is the probability of misclassifying such an
individual as having condition j. Stacking up the unknown
Mij’s into a matrix, we have a parameter M that represents
the misclassification rates of the CCVA algorithm. M will be
close to the identity matrix (with ones on the diagonal and
zeros elsewhere) for an accurate algorithm and far from the
identity matrix for an inaccurate algorithm.
To overcome the bias in raw CSMF estimates, we estimate

the misclassification rates M for each of the two CCVA algo-
rithms with respect to the MITS-COD. The CHAMPS data
used in this analysis contains MITS-COD for the deaths of
426 children and 614 neonates across all sites. For the same
subjects, we have the results of the automated algorithms
(EAVA and InSilicoVA) run on their VA and can obtain the
VA-COD for the respective algorithms. These paired data are
used to estimate the misclassification rates. We do not
assume that the cause-specific COD proportions are the
same for the COMSA and CHAMPS, but rather that the con-
ditional misclassification rates of the VA algorithms with
respect to MITS-COD are equivalent between the two.
We first illustrate how the calibration works using a simple

example with three causes. Let (p1, p2, p3) denote the true
CSMF for these causes in the population of interest and (q1,
q2, q3) denote the uncalibrated CSMF estimated from a
CCVA algorithm. One can obtain an estimate of the error
rates of the algorithm from a paired dataset of VA- and
MITS-COD. These rates are summarized in an error matrix
M 5 (Mij), where M11 is the sensitivity of VA identifying the
first cause, M21 is the error rate of VA-COD being cause 1
when the MITS-COD is cause 2, and the other entries are
similarly defined. Then, following the law of total probability,
we have

q1 5P VA COD5 cause 1ð Þ
5P MITS COD5 cause 1ð Þ
� PðVA COD5 cause 1 j MITS COD5 cause 1Þ
1P MITS COD5 cause 2ð Þ
� PðVA COD5 cause 1 j MITS COD5 cause 2Þ
1PðMITS COD5 cause 3Þ
� PðVA COD5 cause 1 j MITS COD5 cause 3Þ

5p1 �M11 1p2 �M21 1p3 �M31

We can develop similar equations for q2 and q3. To gener-
alize this to the case with more than three causes, we denote
by p the target parameter of interest (i.e., the population
CSMF); p is a vector whose ith component is the CSMF for
the ith cause. We let q denote the apparent CSMF as pro-
vided by the raw (uncalibrated) and biased CCVA algorithms.
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Following the law of total probability, the apparent CSMF for
each cause j is a weighted estimate of the true CSMF for all
causes, weighted by the proportion of times those causes
are misclassified as cause j by CCVA. In mathematical
terms, this yields the equation

q5M9p (1)

Note that q and M are both directly estimable from the
available data: q is measured by the aggregated COMSA
raw CSMF estimates from the CCVA algorithms, and M is
measured by comparing the CCVA and CHAMPS results. If
q and M were known with certainty, then p could be calcu-
lated by solving the system of linear equations q 5 M9p.
Because q andM instead are associated with statistical esti-
mates based on data, one can use a Bayesian procedure for
the calibration as described by Datta et al.10 The approach
uses multinomial likelihoods for the data and conducts
Bayesian inference using Markov Chain Monte Carlo that
ensures propagation of uncertainty.
Multi-cause CCVA outputs. As mentioned earlier, for

each VA record, the InSilicoVA algorithm outputs predicted
conditional COD probabilities. Although this prediction can
be summarized into one class (the class with the highest
predicted probability), such a procedure wastes information.
For example, it considers deaths with a 60% probability of a
COD to contain the same information as deaths with a 100%
probability, even though the latter is clearly stronger evi-
dence for that COD. Also, with more than two CODs, the
largest predicted probability could even be well under 60%.
In addition, a disease that shares a symptom profile with a
more common COD might never be identified as the most
likely COD in any individual case; the single-cause proce-
dure will incorrectly indicate a prevalence of zero for such a
disease. We aim instead to use the multi-cause output of
complete set of InSilicoVA predicted probabilities for each
individual case, without recourse to the plurality rule.
EAVA is a deterministic algorithm designed to yield single-

class COD predictions. We used a novel modification of the
EAVA algorithm to generate multi-cause predictions for
cases where more than one COD is compatible with the VA
responses. This is achieved by running the algorithm first
normally to identify the most likely cause, then running the
algorithm a second time with the most likely cause removed
from the COD hierarchy. The cause selected by this second
run of the algorithm is identified as the second most likely
cause. We then create a multi-cause EAVA output assigning
the most likely cause a probability of 75% and the second
most likely cause a probability of 25%. All other causes are
assigned a probability of 0%. Sensitivity analysis was con-
ducted to study the impact of the choice of the weights.
MITS underlying and immediate causes. Death is a

complex process involving a causal chain encompassing
multiple causes. In fact, for each death assessed by the
CHAMPS process that is enrolled with MITS, all CODs are
captured, which includes both an underlying and immediate
cause being identified. The single-cause analysis would only
use the “underlying” cause because it is the first one to
appear and leads to the chain of events causing death. How-
ever, in many deaths, the immediate cause, besides being
the final cause in the causal chain, carries important informa-
tion that may affect policy or clinical decisions. For example,
if we only know that deaths had HIV (underlying cause) and

ignored that the terminal events involved tuberculosis or
pneumonia, we would not be well informed. Therefore, we
aim to allow the use of up to two MITS-CODs (underlying
and immediate) for each death (recognizing that there may
be even more causes for some deaths). If MITS does not
identify two distinct causes (i.e., if both the underlying and
immediate causes are the same), the MITS-COD remains a
single cause as before.
Multi-cause misclassification matrix. With these aims in

mind, it is necessary to generalize the notion of CCVA mis-
classification rates described above to allow for multiple
causes for both the CCVA outputs and the CHAMPS diagno-
sis. We first extend the definition of misclassification matrix
for multi-cause CCVA outputs but with single-cause MITS
output. Recall that for a single-cause analysis, each entry of
the misclassification matrix Mij is the proportion of deaths
that belong to class i (i.e., have MITS-COD i) that are identi-
fied as belonging to class j (i.e., have VA-COD j). For multi-
cause CCVA output, the misclassification rate Mij is defined
as the average score assigned to cause j by the CCVA algo-
rithm among all deaths that would be attributed to MITS-
COD i. Because for binary data averages are the same as
proportions, the multi-cause definition of misclassification
rates agrees with the previous definition of M if all the CCVA
outputs were single cause.
The calibration framework also allows for multiple MITS

causes (underlying and immediate causes). This extension
follows from recognizing that for multi-cause MITS-COD, the
VA-COD for a death is a mixture of the misclassification
rates of CCVA for the two possible MITS-COD (underlying
and immediate) for that death. To formally understand this,
for a total of C causes considered, we can summarize the
multi-cause MITS-COD for a case in a C-length vector x.
The entries of x will be 1 (if a cause is identified as both the
underlying and immediate causes of death), 0.5 (if the cause
is identified as one of immediate or underlying MITS-COD
but not both), or 0 (if the cause is not identified as either
COD). Consider a case where MITS identifies cause 1 as the
immediate cause and cause 2 as the underlying cause. This
MITS diagnosis can be expressed as a C-length vector x 5
(0.5, 0.5, 0, … , 0). The multi-cause calibration interprets the
MITS diagnosis as assigning 50 out of 100 individuals with
such a MITS diagnosis to cause 1 and the remaining 50 indi-
viduals to cause 2. Hence, the proportion of times the CCVA
will predict cause j for such a case will be the weighted aver-
age of the VA misclassification rates for causes 1 and 2 (i.e.,
0.5 * M1j 1 0.5 * M2j 5 M9x). Thus, estimating the misclassifi-
cation matrix corresponds to a linear regression y 5 M9x of
the multi-cause VA-COD y on the multi-cause MITS-COD x,
and the misclassification matrix M can be interpreted as the
multi-dimensional regression line. This notion of the misclassi-
fication matrix is formally defined by Datta15 and implemented
in the codalm R package.18 Note that if the MITS identifies a
single cause (i.e., one entry of x is 1), then this formulation
agrees with the previous single-cause definition ofM.
Multi-cause calibration. The generalization of the mis-

classification matrix allows us to extend the VA calibration to
allow multi-cause VA-COD and MITS-COD. The CHAMPS
data of paired MITS and VA records are used to estimate the
misclassification matrix using the regression method described
in “Multi-cause misclassification matrix.” The COMSA VA data
allows estimating the raw (uncalibrated) CSMF q. Letting p
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denote the calibrated CSMF, the equation q 5 M9p presented
in “Overview of single-cause VA-calibration” remains valid for
multi-cause data. Hence, subsequent to estimation of M and
q, one can solve for p using the equation above. However,
unlike the single-cause data, which is categorical (discrete) and
amenable to multinomial modeling, the multi-cause data (also
termed compositional or fractional data) cannot be modeled
using a multinomial distribution. This is because both the
CCVA and MITS COD outcomes are no longer discrete vari-
ables. Multi-cause COD are now compositional variables (i.e.,
vectors of probability scores, with each probability representing
the chance that death occurred due to the corresponding
cause, summing up to 1).
Rather than maximizing a likelihood function, we minimize

a loss function to connect parameters to the multi-cause
data. The Kullback-Leibler divergence, or relative entropy
loss, is a popular measure of dissimilarity connecting compo-
sitional or multi-cause data to parameters. Previous research
provides a guide for Bayesian-style inference using loss func-
tion rather than a full likelihood.16,17 With a given loss func-
tion and prior, we have the generalized Bayes posterior for
multi-cause VA calibration:

Generalized posterior / exp 2lossðparameters j dataÞ½ � � prior

Hence, instead of a likelihood formulation, the multi-cause
calibration is conducted in a generalized Bayes rule by using
the relative entropy (Kullback-Leibler) loss functions for
multi-cause data (see Fiksel et al.9 for details). This loss
agrees with the multinomial likelihood for single-cause data,
and thus the multi-cause VA calibration is a generalization of
the single-cause one. With this set-up, computations to find
the optimal estimates of unknown parameters can proceed
in a manner analogous to the single-cause paradigm. To
arrive at an ensemble calibrated estimate, the loss function
is taken as the sum of the loss functions for EAVA and InSili-
coVA. The purpose of combining the loss functions for both
algorithms is to yield estimates that are consistent with the
results of both algorithms. Note that taking the sum of the
loss functions for the ensemble calibration is equivalent to
placing equal importance to each VA algorithm. If there is a
priori knowledge that one algorithm is more accurate than
the other, one can also consider a weighted sum of the loss
functions, placing higher weights to the more accurate algo-
rithm. However, it is hard to quantitatively assess superiority
of an algorithm a priori and assign a number to this. Also,
although the prior weights are equal for the ensemble cali-
bration, the final estimated CSMF will often tend to align with
the estimate from calibrating the most accurate CCVA
algorithm.9,10

Previously, extensive validation studies were presented using
the benchmarking PHMRC dataset for the assessment of the
multi-cause VA calibration method. These validation studies
compared the calibrated and uncalibrated CCVA algorithms

using the cause-specific mortality fraction accuracy (CSMFA)
metric.19 However, this metric requires knowledge of the true
CSMF for the dataset. This is available for the PHMRC data-
set, which also contains a more comprehensive COD infor-
mation for each record in addition to the VA data. For the
COMSA analysis, the true CSMF is unknown and is the quan-
tity of interest that needs to be estimated. Hence, CSMFA
cannot be calculated.
To evaluate statistical models without knowledge of the

true parameter values, a common strategy is to compare
the out-of-sample prediction performance of the candidate
models on hold-out data. This strategy cannot be adopted
for VA calibration because the algorithm does not work at
the individual level but only at the population level. In other
words, the calibration does not calibrate the COD for the indi-
vidual deaths or produce individual-level calibrated COD pre-
dictions; it only calibrates the estimate of the population-level
CSMF. To compare uncalibrated models with their calibrated
counterparts, we use the Widely Applicable Information Crite-
rion (WAIC),20 a goodness-of-fit measure that uses in-sample
model fit to estimate the model’s ability to predict future
observations.21 WAIC provides an estimate of out-of-sample
(prediction) error but using only in-sample (training) data.22

WAIC also harmonizes well with Bayesian inference, making
use of the entire posterior distribution available from the Mar-
kov Chain Monte Carlo runs. Calculating the WAIC for the
multi-cause calibrated models is not substantially different
from calculating the WAIC for the single-cause calibrated
models, except that the log-likelihood function is replaced
with the negative log of the loss function.
Data adjustments and exclusion. Given the raw output

of the MITS and CCVA algorithms, we have instituted a few
steps of pre-processing to ensure the accuracy and validity
of our procedure. Because conditions for neonates in South
Africa hospitals differ from those in the other countries of
interest, we exclude these 274 South Africa neonates from
our analysis. The EAVA algorithm is inconclusive for a signifi-
cant proportion of individuals, failing to identify any particular
COD. These deaths would have to be by necessity excluded
from a single-cause analysis, but the multi-cause calibration
accommodates imputed values for this data with best avail-
able estimates. For the COMSA data, inconclusive EAVA
deaths are assigned the average EAVA scores of all other
(conclusive) EAVA scores. For a death with inconclusive
EAVA diagnosis in the CHAMPS data, we impute the EAVA
COD as the row of the EAVA misclassification matrix corre-
sponding to the subject’s MITS underlying COD, where the
misclassification matrix is calculated relative to the single-
cause MITS. These choices are made to represent our best
estimate of how the EAVA algorithm would classify such
subjects. Because the imputed values would be multi-cause
in nature, they cannot be included in the single-cause analysis.
Thus, deaths with inconclusive EAVA diagnoses, which had to

TABLE 1
Raw multi-cause counts and percentages in children (1–59 months) as predicted by InSilicoVA and EAVA using 1,841 COMSA

children (1–59 months) VA records

Malaria Pneumonia Diarrhea Severe malnutrition HIV Other Other infections

InSilicoVA, n (%) 356.8 (19.4) 275.7 (15.0) 445.2 (24.2) 75.6 (4.1) 58.3 (3.2) 199.6 (10.8) 429.9 (23.3)
EAVA, n (%) 144.2 (7.8) 437.1 (23.7) 344.4 (18.7) 148.3 (8.1) 116.1 (6.3) 106.6 (5.8) 544.2 (29.6)
COSMA5 CountrywideMortality Surveillance for Action; VA5 verbal autopsy.
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be removed from a single-cause analysis, are assigned multi-
cause imputed scores, which are then used in the multi-cause
calibration.
With C CODs, learning the misclassification matrix requires

estimating a total of C*(C 2 1) parameters. To minimize the
dimensionality of the problem while retaining its important
aspects, we group some CODs into more general labels
based on evidence on the predominant CODs among chil-
dren and neonates.23,24 For the children, we use the following
seven classifications: malaria, pneumonia, diarrhea, severe
malnutrition, HIV, other infections (which includes meningitis,
typhoid fever, hepatitis, etc.), and other. For the neonates, we
use the following five classifications: congenital malforma-
tion, infection (neonatal tetanus, meningitis and encephalitis,
diarrhea, pneumonia, and sepsis), intrapartum-related events
(IPREs), other, and prematurity.

RESULTS

Raw data. The timeframe for the COMSA VA dataset used
for all the analysis presented here is May 2018 to May 2021.
Table 1 summarizes the CSMF results using the InSilicoVA
and EAVA algorithms for children who died in the COMSA
surveillance area. The estimated prevalences and the rank-
ings of the causes are different for the two algorithms; the
largest difference is that InSilicoVA recognizes many more
malaria deaths than EAVA.
Table 2 summarizes the results for 818 neonatal deaths in

COMSA for the same algorithms. The prevalence of infection
is quite high for both algorithms, accounting for a majority of
deaths by EAVA. IPRE and prematurity also account for large
percentages of deaths. Congenital malformation is rare in
the judgments of both algorithms.
Table 3 is a contingency table of the relationship between

underlying (labeled horizontally) and immediate (labeled ver-
tically) CODs of children as identified by CHAMPS. Because
there are many entries off the diagonals, we can see that
many deaths have multiple MITS causes.
We can see that pneumonia and other infections are rela-

tively common as immediate causes, whereas severe malnu-
trition and other are more common as underlying rather

than immediate causes. The combination of other as an
underlying cause and other infections as an immediate
cause is particularly frequent.
Table 4 is the contingency table of MITS underlying and

immediate causes for the neonate cohort. We can see that
for most of the causes the number of deaths where they
were the underlying cause (row totals) are similar to the num-
ber of deaths where they were the immediate cause (column
totals). The combination of infection as an underlying cause
and prematurity as an immediate cause is relatively frequent.
Figure 1 displays the estimate of the multi-cause misclas-

sification matrix M comparing the MITS-COD (row headers)
and each VA-COD (column headers). Conditional on the
MITS-COD classifications, each row gives the frequency of
VA-COD of individuals with that MITS-COD for both InSili-
coVA and EAVA. Because the diagonal entries are far from
100%, it is apparent that there is a high frequency of mis-
classification. Only a few CODs are correctly identified in
more than half of the deaths (diarrhea by both algorithms
and HIV by EAVA). Malaria is identified relatively often by
InSilicoVA but not by EAVA. Severe malnutrition is misclassi-
fied very often by both algorithms.
Figure 2 displays the same information for the neonatal

deaths. Infection and prematurity are correctly identified in
more than half the deaths by both algorithms, and IPRE is cor-
rectly identified by InSilicoVA for a majority of deaths. How-
ever, EAVA mislabels IPRE as infection in 59% of deaths.
Note that congenital malformation, up to rounding error, is
never identified as a COD by the InSilicoVA algorithm.
Figure 3 compares graphically the diagonal entries (i.e.,

the sensitivity values) of the single-cause and multi-cause
misclassification matrices. We see that for both EAVA and
InSilicoVA and for both children and neonates, the data
points generally lie above the 45 degree line. We conclude
that the multi-cause analysis has somewhat higher sensitiv-
ity. That is, according to the multi-cause weighting and mis-
classification calculations we have used, the MITS-COD and
VA-COD are in better agreement for multi-cause data than
the single-cause data. Causes where the multi-cause analysis
leads to around 5% or more increased sensitivity for CCVA for
children are HIV (both algorithms), diarrhea (InSilicoVA), and

TABLE 2
Raw multi-cause counts and percentages in neonates as predicted by InSilicoVA and EAVA using 818 COMSA neonate VA records

Congenital malformation Infection IPRE Other Prematurity

InSilicoVA, n (%) 1.6 (0.2) 363.8 (44.5) 221.6 (27.1) 33.5 (4.1) 197.5 (24.1)
EAVA, n (%) 29.1 (3.6) 479.5 (58.6) 144.3 (17.6) 32.7 (4.0) 132.3 (16.2)

COSMA5 CountrywideMortality Surveillance for Action; IPRE5 intrapartum-related event; VA5 verbal autopsy.

TABLE 3
Distribution of CHAMPS MITS underlying and immediate causes of death of 426 children (1–59 months)

Immediate cause

Malaria Pneumonia Diarrhea Severe malnutrition HIV Other Other infections Total

Underlying cause Malaria 34 8 0 0 0 5 4 51
Pneumonia 0 27 1 0 0 4 14 46
Diarrhea 0 9 15 0 0 0 4 28
Severe malnutrition 9 18 6 0 0 2 35 70
HIV 6 17 4 0 1 1 18 47
Other 3 33 0 1 0 39 54 130
Other infections 0 9 0 0 0 12 33 54
Total 52 121 26 1 1 63 162 426

CHAMPS5 Child Health andMortality Prevention; MITS5minimally invasive tissue sampling.
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other (EAVA). For neonates, the multi-cause analysis leads to
increased sensitivity for infection (both algorithms), IPRE (InSili-
coVA), other (InSilicoVA), and congenital malformation (EAVA).
For some of the other cause–algorithm combinations, this dif-
ference is not dramatic, and a few conditions (malaria for chil-
dren; IPRE and other for neonates) are slightly better identified
in the single-cause data for EAVA.
Calibration. We present the calibration results of the child

deaths first. Supplemental Table 1 gives uncalibrated and
calibrated CSMF estimates for InSilicoVA, EAVA, and the
ensemble algorithm, with 95% credible intervals for the cali-
brated models. Figure 4 displays this information graphically.
The pre- and post-calibration CSMF values are strongly
related, yet there are some important differences. The cali-
bration causes the estimated pneumonia CSMF to decrease
for both algorithms; this can be understood from Figure 1
because pneumonia is identified with relatively high sensitiv-
ity but is often incorrectly identified in deaths that are attrib-
utable to other causes, particularly malaria (which is itself a
common COD). Therefore, the calibrated model recognizes
that many deaths that are identified as due to pneumonia by
the CCVA should be properly allocated to other causes.

Conversely, for the EAVA and ensemble algorithms, the esti-
mated CSMF of other infection increases through calibration
because sensitivity for this cause is low; the COD is often mis-
classified as pneumonia and diarrhea. Thus, the calibration
recognizes that many deaths identified as due to pneumonia or
diarrhea should properly be labeled as other infection. We can
see that for EAVA the jump in the other infection CSMF after
calibration is rather dramatic, but the CI is quite wide. This indi-
cates high uncertainty in the posterior distribution, likely result-
ing from near-singularity of the misclassification matrix; that is,
uncertainty in the estimation of the misclassification matrix
causes even larger uncertainty in the estimation of the CSMF.
As reported in Supplemental Table 1, the calibrated CSMF

estimates of the EAVA and InSilicoVA algorithms are similar,
although InSilicoVA identifies more deaths as diarrhea and
malaria, whereas EAVA identifies more deaths as other
infection. As expected, the results of the ensemble algorithm
that uses data from both InSilicoVA and EAVA are generally
between the results of the two algorithms. However, the cali-
brated CSMF from the ensemble algorithm aligns much
more closely with the calibrated InSilicoVA CSMF (Figure 4).
In the plot of the error matrices for children in Figure 2, we

TABLE 4
Distribution of CHAMPS MITS underlying and immediate causes of death of 340 neonates (excluding data from South Africa)

Immediate cause

Congenital malformation Infection IPRE Other Prematurity Total

Underlying cause Congenital malformation 10 6 5 2 3 26
Infection 1 61 4 1 26 93
IPRE 4 13 118 2 10 147
Other 0 2 2 7 0 11
Prematurity 0 6 10 3 44 63
Total 15 88 139 15 83 340

CHAMPS5 Child Health andMortality Prevention; IPRE5 intrapartum-related event; MITS5minimally invasive tissue sampling.
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FIGURE 1. Pseudo-maximum likelihood estimates of misclassification rates matrices for multi-cause InSilicoVA and EAVA for children
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see that the sensitivities for InSilicoVA are higher than those
of EAVA for every cause except HIV. Therefore, the ensem-
ble calibration agrees with the more accurate algorithm here.
The ensemble model identifies other infection as the most
common COD.
Supplemental Figure 1 displays WAIC values for the cali-

brated and uncalibrated models for each algorithm. In each

case, the calibrated model has a lower value of WAIC, indi-
cating that the calibrated models are better fit to the data
than the uncalibrated models. Figure 5 compares the poste-
rior distribution of the ensemble CSMFs for the single-cause
and multi-cause analysis. The analyses are largely in agree-
ment, with some important changes. Malaria is identified as
less prevalent in the multi-cause analysis, whereas diarrhea
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and other are identified as slightly more prevalent. Figure 6
indicates that results are not sensitive to the choice of prob-
ability weights assigned to the primary and secondary COD
as identified by EAVA.
We discuss the findings for the neonatal deaths next. We

can see from Figure 7 that the InSilicoVA CSMF for infection is
increased through calibration. This is somewhat surprising
because the sensitivity for the identification of infection is rela-
tively high. However, true infection deaths are frequently misla-
beled as causes that are common (prematurity and IPRE),
whereas only uncommon causes (congenital malformation and
other) are frequently labeled as infection, suggesting overall
underreporting. This results in the increase in CSMF for infec-
tion after calibration. This increase in the CSMF for infection
after calibration is less pronounced in EAVA because the
increase is partly offset by adjusting for misclassification of a
large percentage of MITS IPRE deaths as infection by EAVA.
Calibration decreases the estimated CSMF of prematurity for
both algorithms. This can be understood by noting that the
sensitivity for prematurity is very high, and common causes
(infection and IPRE) are frequently mislabeled as prematurity.
As given in Figure 7 and Supplemental Table 2, calibrated

CSMF estimates of the EAVA and InSilicoVA algorithms are
very similar, and the results of the ensemble algorithm are
generally close to the average of the results of the two algo-
rithms. All models identify infection as the most common

cause of death. Supplemental Figure 2 indicates, as with the
child data, that model fit is improved by calibration for all
algorithms, as measured by WAIC. Supplemental Figure 3
demonstrates that the posterior distributions of CSMF are
nearly identical for the multi- and single-cause analyses for
neonates. Supplemental Figure 4 indicates that results are
not sensitive to the choice of probability assigned to the pri-
mary COD as identified by EAVA.

DISCUSSION

In this paper, we have described the application of a multi-
cause VA calibration method to improve quantification of
CSMF from CCVA data for child and neonatal deaths identi-
fied in COMSA. By cross-tabulating the results of CCVA
algorithms with respect to MITS-COD, we can learn the mis-
classification patterns of the CCVA algorithms and thus cor-
rect the CSMF estimates. This paper has focused on the use
of multiple causes in both the VA-COD and MITS-COD (up
to two). We see this as preferable to the single-cause analy-
sis because it more accurately incorporates the data sources
because both VA-COD and the MITS-COD may identify mul-
tiple causes of death.
With respect to the COMSA data, we find that calibrated

models are consistently better fits for the combined CHAMPS-
COMSA data compared with their uncalibrated counterparts,
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as measured by WAIC. We find that, among other changes,
calibration increases the estimated CSMF of malaria and other
infections and decreases the estimated CSMF of pneumonia in
children. For neonatal deaths, calibration increases the CSMF
of infection and decreases the estimated CSMF of prematurity.
We have attempted to intuitively explain these changes based
on the misclassification matrices, but we note that the calibra-
tion involves solving a large system of equations and the point
estimate of the misclassification matrix may not match the
Bayesian estimates of the calibration procedure; thus, it may
be difficult to understand the calibration results fully by intuition
alone, and it is important to understand the basic principle of
calibration, which is to adjust for imperfect sensitivities of the
CCVA algorithms.
In the final results, infection is the most common cause of

death in neonates, and other infections is the most common
cause of death in children. Some historical data on CSMF
for children and neonates in Mozambique are available from
estimates published in the report of the INCAM VA survey in
2007 and those published in Perin et al.,24 which is informed
by data from both the INCAM survey and COMSA. We see
that for child deaths at 1–59months, the multi-cause ensem-
ble calibration estimated a higher CSMF for diarrhea (21%,
with credible interval of 16–27%) compared with INCAM
(6%) and Perin et al.24 (11%). This is due to InSilicoVA identi-
fying a high proportion of diarrhea cases for COMSA data
(Table 1). The CSMF for malaria was generally similar
(. 20%) in all three estimates, as was the CSMF for pneumonia

(�10%). For neonates, both previous reports estimated a signif-
icantly higher CSMF of prematurity (INCAM: 35%, Perin et al.24:
48%) compared with the calibrated CSMF (10%, with credible
intervals of 7–13%). We see from the error matrices in Figure 2
that both CCVA algorithms produced a large number of false
positives for prematurity. The calibration adjusts for these over-
counting of prematurity deaths, thereby reducing the CSMF for
prematurity. This, in turn, increases the CSMF for infection for
the calibration (62%, with credible interval of 56–69%), which is
higher than the INCAM results (27%). The CSMF for IPRE is
similar (�20%) for all three sets of estimates.
There are several differences between our study and the

INCAM study that make these estimates not directly compa-
rable. They correspond to different time periods, are based
on datasets that may not be comparable in terms of repre-
sentativeness, and have used different methods for cause-
of-death diagnosis. Therefore, the observed differences in
estimates are possibly due to all of the aforementioned dif-
ferences in the two settings. Neither the INCAM nor the Perin
et al.24 estimates had considered VA misclassification, and
adjusting for it presumably would have changed those
results in the same way our raw results change after calibra-
tion. The calibrated CSMF from our study emphasizes need
to account for this misclassification and to reevaluate the pri-
orities for the health services based on the changes after cal-
ibration. However, before undertaking such actions, which
of course would have resource implications, it would be
important to seek confirmatory information of this bias of VA
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perhaps from health facility monitoring of deaths or even
from demand for health care at facility level (and community,
if there are services that could be monitored) for illnesses
due to the same causes. The frequent misclassification of
some causes by VA also has implications for care and the
need to consider the causal chain (e.g., the possibility that
the death in premature babies may be due to infection as
highlighted in the large proportion of infection cases being
misclassified as prematurity by VA) (Figure 2, left panel).
The current estimates use all the available COMSA data

collected across the 11 provinces to produce a pooled cali-
brated CSMF estimate for Mozambique. One can also con-
duct the calibration on subsets of the data corresponding to
specific provinces to produce subnational estimates. Such
an exercise would be useful only if there is adequate sample
size per province to yield estimates that are not too impre-
cise. Similarly, one can also stratify the analysis by time to
produce yearly CSMF estimates and study trends over time.
This would require the yearly subsets of the data to have uni-
form and representative geographical coverage across the
country. We also expect the CSMF estimates to evolve with
more COMSA and CHAMPS data collection and with the
refinement of the CCVA algorithms.
The multi-cause calibration approach has certain limita-

tions. The single-cause calibration is simpler to implement,
but the assignment of multi-cause COD can be difficult using
any method. Current implementation of the multi-cause cali-
bration uses a simplified representation of the multi-cause
MITS diagnosis by only using up to twoMITS-COD (underlying

and immediate causes). Future work will expand the multi-
cause calibration framework to incorporate information more
comprehensively about the entire set of (possibly more than
two) causes present in the causal chain leading to the death.
Also, both the single- and multi-cause calibration procedures
rely on two main assumptions: 1) that the causes of death
identified by MITS in the CHAMPS cohort are accurate and 2)
that the CCVA misclassification rates in the COMSA popula-
tion match the misclassification rates in the CHAMPS data.
Future work needs to scrutinize these assumptions. For exam-
ple, to understand representativeness of the MITS-VA error
matrix estimated from the pooled CHAMPS data, it would be
important compare error matrices from individual countries
with MITS-VA pairs once enough MITS are conducted locally.
If the MITS-VA error matrices reveal substantial heterogeneity
across countries, it would highlight the need for a local dataset
of MITS-VA pairs to estimate the VA misclassification rates.
The multi-cause analysis has important advantages over

the single-cause analysis. Death is a complex process, and
assigning any one cause, although it is simpler procedurally,
can be problematic especially when using a probabilistic
CCVA algorithm like InSilicoVA, which provides rich multi-
cause output. Furthermore, multi-cause calibration allows
use of all data, including the deaths where one of the CCVA
algorithms is inconclusive. For such inconclusive deaths, the
calibration requires imputation. The imputed value is a multi-
cause COD estimate that cannot be used in a single-cause
analysis. Thus, a single-cause analysis can lead to loss of a
significant amount of data (in our case, single-cause analysis
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leads to loss of �15–20% of the COMSA data due to incon-
clusive EAVA diagnosis). We also see that the multi-cause
analysis leads to better agreement between the VA-COD and
MITS-COD (Figure 3). This is because the single-cause cali-
bration, using only MITS underlying COD, would regard the
deaths where VA-COD agrees with the MITS immediate COD
but not with the MITS underlying COD as complete misclas-
sifications. This would lead to higher estimates of misclassifi-
cation. The multi-cause calibration considers such deaths as
only partial misclassification and thus better captures the
degree of false classifications in the CCVA algorithms.
For the COMSA-Mozambique data analysis, the final cali-

brated mortality fractions from the multi-cause analysis does
not differ too much from the single-cause analysis for most
causes. However, the advantages of the multi-cause analy-
sis can manifest more in VA datasets from other populations.
For example, if for a large fraction of deaths in the population
the VA-COD is inconclusive between two causes but always
assigns one cause a higher score than the other, then in a
single-cause analysis the CSMF for the cause with lower score
will always be zero, although it is likely that many of the deaths
occurred due to this cause. Also, besides calibrating the
VA-based CSMF, another future utility of the misclassification
matrices is to help understand why the VA misclassifies such a
large proportion of cases. For such a task, the multi-cause mis-
classification matrices help reduce cases with false misclassifi-
cations occurring due to either the single-cause VA or the
single-cause MITS leaving out the matching cause. Hence, one

can focus on studying cases with true mismatch between VA
and MITS and try to improve the VA algorithms. Thus, it is
advisable to use the multi-cause analysis rather than the
single-cause one for studying and calibrating VA data.
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