A Direct from Blood Reverse Transcriptase Polymerase Chain Reaction Assay for Monitoring Falciparum Malaria Parasite Transmission in Elimination Settings

Brian J. Taylor School of Public Health, Katz Group Centre, University of Alberta, Edmonton, Alberta, Canada;

Search for other papers by Brian J. Taylor in
Current site
Google Scholar
PubMed
Close
,
Kjerstin Lanke Department of Medical Microbiology, Radboud University Medical Centre, Geert Grooteplein 26-28, Nijmegen, The Netherlands;

Search for other papers by Kjerstin Lanke in
Current site
Google Scholar
PubMed
Close
,
Shanna L. Banman School of Public Health, Katz Group Centre, University of Alberta, Edmonton, Alberta, Canada;

Search for other papers by Shanna L. Banman in
Current site
Google Scholar
PubMed
Close
,
Isabelle Morlais Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique centrale, Yaoundé, Cameroon;
Institut de Recherche pour le Développement, Université de Montpellier (UMR) MIVEGEC, Montpellier Cedex, France;

Search for other papers by Isabelle Morlais in
Current site
Google Scholar
PubMed
Close
,
Merribeth J. Morin PATH Malaria Vaccine Initiative, Washington, District of Columbia;

Search for other papers by Merribeth J. Morin in
Current site
Google Scholar
PubMed
Close
,
Teun Bousema Department of Medical Microbiology, Radboud University Medical Centre, Geert Grooteplein 26-28, Nijmegen, The Netherlands;

Search for other papers by Teun Bousema in
Current site
Google Scholar
PubMed
Close
,
Sanna R. Rijpma Department of Medical Microbiology, Radboud University Medical Centre, Geert Grooteplein 26-28, Nijmegen, The Netherlands;

Search for other papers by Sanna R. Rijpma in
Current site
Google Scholar
PubMed
Close
, and
Stephanie K. Yanow School of Public Health, Katz Group Centre, University of Alberta, Edmonton, Alberta, Canada;
Department of Medical Microbiology and Immunology, Katz Group Centre, University of Alberta, Edmonton, Alberta, Canada

Search for other papers by Stephanie K. Yanow in
Current site
Google Scholar
PubMed
Close
Restricted access

We describe a novel one-step reverse transcriptase real-time PCR (direct RT-PCR) for Plasmodium falciparum malaria parasites that amplifies RNA targets directly from blood. We developed the assay to identify gametocyte-specific transcripts in parasites from patient blood samples, as a means of monitoring malaria parasite transmission in field settings. To perform the test, blood is added directly to a master mix in PCR tubes and analyzed by real-time PCR. The limit of detection of the assay on both conventional and portable real-time PCR instruments was 100 parasites/mL for 18S rRNA, and 1,000 parasites/mL for asexual (PFE0065W) and gametocyte (PF14_0367, PFGEXP5) mRNA targets. The usefulness of this assay in field studies was explored in samples from individuals living in a high-transmission region in Cameroon. The sensitivity and specificity of the assay compared with a standard two-step RT-PCR was 100% for 18S rRNA on both conventional and portable instruments. For PF14_0367, the sensitivity and specificity were 85.7% and 70.0%, respectively, on the conventional instrument and 78.6% and 90%, respectively, on the portable instrument. The concordance for assays run on the two instruments was 100% for 18S rRNA, and 79.2% for PF14_0367, with most discrepancies resulting from samples with low transcript levels. The results show asexual and sexual stage RNA targets can be detected directly from blood samples in a simple one-step test on a field-friendly instrument. This assay may be useful for monitoring malaria parasite transmission potential in elimination settings, where sensitive diagnostics are needed to evaluate the progress of malaria eradication initiatives.

    • Supplemental Materials (PDF 279 KB)

Author Notes

 Address correspondence to Stephanie K. Yanow, University of Alberta, School of Public Health, Katz Group Centre 6032B, Edmonton, AB, CAN T6G 2E1. E-mail: yanow@ualberta.ca

Conflict of interest: Stephanie K. Yanow is a member of the Scientific Advisor Board of Aquila Diagnostic Systems, Inc.

Authors’ addresses: Brian J. Taylor, School of Public Health, Katz Group Centre 6043, University of Alberta, Edmonton, Alberta, Canada, E-mail: bjtaylor@ualberta.ca. Kjerstin Lanke and Teun Bousema, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, NL, E-mails: kjerstin.lanke@radboudumn.nl and teun.bousema@radboudumc.nl. Shanna L. Banman, School of Public Health, University of Alberta, Edmonton, Alberta, Canada, E-mail: sbanman@ualberta.ca. Isabelle Morlais, Institut de Recherche pour le Développement, Université de Montpellier, MIVEGEC, Montpellier, Languedoc-Roussillon, France, and Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique centrale, Yaoundé, Cameroon, E-mail: isabelle.morlais@ird.fr. Merribeth J. Morin, PATH Malaria Vaccine Initiative, Washington, DC, E-mail: mmorin@path.org. Sanna R. Rijpma, Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, Gelderland, NL, E-mail: sanna.rijpma@radboudumc.nl. Stephanie K. Yanow, School of Public Health, Katz Group Centre 6032B, University of Alberta, Edmonton, Alberta, Canada, and Department of Medical Microbiology and Immunology, Katz Group Centre, University of Alberta, Edmonton, Alberta, Canada, E-mail: yanow@ualberta.ca.

Financial support: This study was funded by PATH and by a grant from Alberta Economic Development and Trade co-funded by Aquila Diagnostic Systems, Inc (Edmonton, Canada). Sanna R. Rijpma and Teun Bousema are further supported by a VIDI fellowship from the Netherlands Organization for Scientific Research (NWO; project number 016.158.306).

  • 1.

    Mendis K, Rietveld A, Warsame M, Bosman A, Greenwood B, Wernsdorfer WH, 2009. From malaria control to eradication: the WHO perspective. Trop Med Int Health 14: 802–809.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    World Health Organization, 2016. World Health Organization: World Malaria Report. Geneva, Switzerland: World Health Organization.

    • PubMed
    • Export Citation
  • 3.

    Alonso PL et al., 2011. A research agenda to underpin malaria eradication. PLoS Med 8: e1000406.

  • 4.

    Churcher TS, Trape JF, Cohuet A, 2015. Human-to-mosquito transmission efficiency increases as malaria is controlled. Nat Commun 6: 6054.

  • 5.

    Okell LC, Bousema T, Griffin JT, Ouédraogo AL, Ghani AC, Drakeley CJ, 2012. Factors determining the occurrence of submicroscopic malaria infections and their relevance for control. Nat Commun 3: 1237.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bousema T, Okell LC, Felger I, Drakeley C, 2014. Asymptomatic malaria infections: detectability, transmissibility and public health relevance. Nat Rev Microbiol 12: 833–40.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Mwingira F, Genton B, Kabanywanyi AN, Felger I, 2014. Comparison of detection methods to estimate asexual Plasmodium falciparum parasite prevalence and gametocyte carriage in a community survey in Tanzania. Malar J 13: 433.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Britton S, Cheng Q, McCarthy JS, 2016. Novel molecular diagnostic tools for malaria elimination: a review of options from the point of view of high-throughput and applicability in resource limited settings. Malar J 15: 88.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Slater HC et al., 2015. Assessing the impact of next-generation rapid diagnostic tests on Plasmodium falciparum malaria elimination strategies. Nature 528: S94–S101.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Goncalves BP, Drakeley C, Bousema T, 2016. Infectivity of microscopic and submicroscopic malaria parasite infections in areas of low malaria endemicity. J Infect Dis 213: 1516–1517.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Lin JT et al., 2015. Microscopic Plasmodium falciparum gametocytemia and infectivity to mosquitoes in Cambodia. J Infect Dis 213: 1491–1494.

  • 12.

    Stone W, Goncalves BP, Bousema T, Drakeley C, 2015. Assessing the infectious reservoir of falciparum malaria: past and future. Trends Parasitol 31: 287–296.

  • 13.

    Bousema T, Drakeley C, 2011. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin Microbiol Rev 24: 377–410.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Babiker HA, Schneider P, Reece SE, 2008. Gametocytes: insights gained during a decade of molecular monitoring. Trends Parasitol 24: 525–530.

  • 15.

    Schneider P, Schoone G, Schallig H, Verhage D, Telgt D, Eling W, Sauerwein R, 2004. Quantification of Plasmodium falciparum gametocytes in differential stages of development by quantitative nucleic acid sequence-based amplification. Mol Biochem Parasitol 137: 35–41.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Buates S, Bantuchai S, Sattabongkot J, Han ET, Tsuboi T, Udomsangpetch R, Sirichaisinthop J, Tan-ariya P, 2010. Development of a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) for clinical detection of Plasmodium falciparum gametocytes. Parasitol Int 59: 414–420.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Babiker HA, Abdel-Wahab A, Ahmed S, Suleiman S, Ranford-Cartwright L, Carter R, Walliker D, 1999. Detection of low level Plasmodium falciparum gametocytes using reverse transcriptase polymerase chain reaction. Mol Biochem Parasitol 99: 143–148.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Koepfli C et al., 2015. Blood-stage parasitaemia and age determine Plasmodium falciparum and P. vivax gametocytaemia in Papua New Guinea. PLoS One 10: e0126747.

  • 19.

    Wampfler R, Timinao L, Beck HP, Soulama I, Tiono AB, Siba P, Mueller I, Felger I, 2014. Novel genotyping tools for investigating transmission dynamics of Plasmodium falciparum. J Infect Dis 210: 1188–1197.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Alano P et al., 1995. COS cell expression cloning of Pfg377, a Plasmodium falciparum gametocyte antigen associated with osmiophilic bodies. Mol Biochem Parasitol 74: 143–156.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Schneider P, Wolters L, Schoone G, Schallig H, Sillekens P, Hermsen R, Sauerwein R, 2005. Real-time nucleic acid sequence-based amplification is more convenient than real-time PCR for quantification of Plasmodium falciparum. J Clin Microbiol 43: 402–405.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Wampfler R, Mwingira F, Javati S, Robinson L, Betuela I, Siba P, Beck HP, Mueller I, Felger I, 2013. Strategies for detection of Plasmodium species gametocytes. PLoS One 8: e76316.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Taylor BJ, Martin KA, Arango E, Agudelo OM, Maestre A, Yanow SK, 2011. Real-time PCR detection of Plasmodium directly from whole blood and filter paper samples. Malar J 10: 244.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Taylor BJ et al., 2014. A lab-on-chip for malaria diagnosis and surveillance. Malar J 13: 179.

  • 25.

    Joice R et al., 2013. Inferring developmental stage composition from gene expression in human malaria. PLOS Comput Biol 9: e1003392.

  • 26.

    Trager W, Jensen JB, 1976. Human malaria parasites in continuous culture. Science 193: 673–675.

  • 27.

    Ifediba T, Vanderberg JP, 1981. Complete in vitro maturation of Plasmodium falciparum gametocytes. Nature 294: 364–366.

  • 28.

    Ponnudurai T, Lensen AH, Leeuwenberg AD, Meuwissen JH, 1982. Cultivation of fertile Plasmodium falciparum gametocytes in semi-automated systems. 1. Static cultures. Trans R Soc Trop Med Hyg 76: 812–818.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Ponnudurai T, Lensen AH, Van Gemert GJ, Bensink MP, Bolmer M, Meuwissen JH, 1989. Infectivity of cultured Plasmodium falciparum gametocytes to mosquitoes. Parasitology 98: 165–173.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Ponnudurai T, Lensen AH, Meis JF, Meuwissen JH, 1986. Synchronization of Plasmodium falciparum gametocytes using an automated suspension culture system. Parasitology 93: 263–274.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    van Schaijk BC et al., 2008. Gene disruption of Plasmodium falciparum p52 results in attenuation of malaria liver stage development in cultured primary human hepatocytes. PLoS One 3: e3549.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Sandeu MM, Abate L, Tchioffo MT, Bayibéki AN, Awono-Ambéné PH, Nsango SE, Chesnais CB, Dinglasan RR, de Meeûs T, Morlais I, 2016. Impact of exposure to mosquito transmission-blocking antibodies on Plasmodium falciparum population genetic structure. Infect Genet Evol 45: 138–144.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Kamau E, Tolbert LS, Kortepeter L, Pratt M, Nyakoe N, Muringo L, Ogutu B, Waitumbi JN, Ockenhouse CF, 2011. Development of a highly sensitive genus-specific quantitative reverse transcriptase real-time PCR assay for detection and quantitation of Plasmodium by amplifying RNA and DNA of the 18S rRNA genes. J Clin Microbiol 49: 2946–2953.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Mercereau-Puijalon O, Barale JC, Bischoff E, 2002. Three multigene families in Plasmodium parasites: facts and questions. Int J Parasitol 32: 1323–1344.

  • 35.

    Murphy SC et al., 2012. Real-time quantitative reverse transcription PCR for monitoring of blood-stage Plasmodium falciparum infections in malaria human challenge trials. Am J Trop Med Hyg 86: 383–394.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Wongsrichanalai C, Barcus MJ, Muth S, Sutamihardja A, Wernsdorfer WH, 2007. A review of malaria diagnostic tools: microscopy and rapid diagnostic test (RDT). Am J Trop Med Hyg 77: 119–127.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Blisnick T, Morales Betoulle ME, Barale JC, Uzureau P, Berry L, Desroses S, Fujioka H, Mattei D, Braun Breton C, 2000. Pfsbp1, a Maurer’s cleft Plasmodium falciparum protein, is associated with the erythrocyte skeleton. Mol Biochem Parasitol 111: 107–121.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Tiburcio M, Dixon MW, Looker O, Younis SY, Tilley L, Alano P, 2015. Specific expression and export of the Plasmodium falciparum Gametocyte EXported Protein-5 marks the gametocyte ring stage. Malar J 14: 334.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    World Health Organization, 2015. Global Technical Strategy for Malaria 2016–2030. Geneva, Switzerland: World Health Organization.

    • PubMed
    • Export Citation
  • 40.

    Malaria Policy Advisory Committee, 2014. WHO Evidence Review Group on Malaria Diagnosis in Low Transmission Settings. Geneva, Switzerland: World Health Organization.

    • PubMed
    • Export Citation
  • 41.

    Hopkins H et al., 2013. Highly sensitive detection of malaria parasitemia in a malaria-endemic setting: performance of a new loop-mediated isothermal amplification kit in a remote clinic in Uganda. J Infect Dis 208: 645–652.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Tsui NB, Ng EK, Lo YM, 2002. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem 48: 1647–1653.

  • 43.

    Al-Soud WA, Radstrom P, 2001. Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol 39: 485–493.

  • 44.

    Nikolaeva D, Draper SJ, Biswas S, 2015. Toward the development of effective transmission-blocking vaccines for malaria. Expert Rev Vaccines 14: 653–680.

Past two years Past Year Past 30 Days
Abstract Views 316 254 33
Full Text Views 498 13 1
PDF Downloads 204 11 1
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save