Genetic Differentiation of Glossina pallidipes Tsetse Flies in Southern Kenya

Winnie A. Okeyo Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Kisumu, Kenya;
Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya;
Yale School of Public Health, Yale University, New Haven, Connecticut;

Search for other papers by Winnie A. Okeyo in
Current site
Google Scholar
PubMed
Close
,
Norah P. Saarman Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut;

Search for other papers by Norah P. Saarman in
Current site
Google Scholar
PubMed
Close
,
Rosemary Bateta Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya;

Search for other papers by Rosemary Bateta in
Current site
Google Scholar
PubMed
Close
,
Kirstin Dion Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut;

Search for other papers by Kirstin Dion in
Current site
Google Scholar
PubMed
Close
,
Michael Mengual Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut;

Search for other papers by Michael Mengual in
Current site
Google Scholar
PubMed
Close
,
Paul O. Mireji Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya;
Yale School of Public Health, Yale University, New Haven, Connecticut;
Center for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya

Search for other papers by Paul O. Mireji in
Current site
Google Scholar
PubMed
Close
,
Collins Ouma Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Kisumu, Kenya;

Search for other papers by Collins Ouma in
Current site
Google Scholar
PubMed
Close
,
Sylvance Okoth Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya;

Search for other papers by Sylvance Okoth in
Current site
Google Scholar
PubMed
Close
,
Grace Murilla Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya;
Yale School of Public Health, Yale University, New Haven, Connecticut;

Search for other papers by Grace Murilla in
Current site
Google Scholar
PubMed
Close
,
Serap Aksoy Yale School of Public Health, Yale University, New Haven, Connecticut;

Search for other papers by Serap Aksoy in
Current site
Google Scholar
PubMed
Close
, and
Adalgisa Caccone Yale School of Public Health, Yale University, New Haven, Connecticut;
Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut;

Search for other papers by Adalgisa Caccone in
Current site
Google Scholar
PubMed
Close
Restricted access

The tsetse fly Glossina pallidipes, the major vector of the parasite that causes animal African trypanosomiasis in Kenya, has been subject to intense control measures with only limited success. The G. pallidipes population dynamics and dispersal patterns that underlie limited success in vector control campaigns remain unresolved, and knowledge on genetic connectivity can provide insights, and thereby improve control and monitoring efforts. We therefore investigated the population structure and estimated migration and demographic parameters in G. pallidipes using genotypic data from 11 microsatellite loci scored in 250 tsetse flies collected from eight localities in Kenya. Clustering analysis identified two genetically distinct eastern and western clusters (mean between-cluster FST = 0.202) separated by the Great Rift Valley. We also found evidence of admixture and migration between the eastern and western clusters, isolation by distance, and a widespread signal of inbreeding. We detected differences in population dynamics and dispersal patterns between the western and eastern clusters. These included lower genetic diversity (allelic richness; 7.48 versus 10.99), higher relatedness (percent related individuals; 21.4% versus 9.1%), and greater genetic differentiation (mean within-cluster FST; 0.183 versus 0.018) in the western than the eastern cluster. Findings are consistent with the presence of smaller, less well-connected populations in Western relative to eastern Kenya. These data suggest that recent anthropogenic influences such as land use changes and vector control programs have influenced population dynamics in G. pallidipes in Kenya, and that vector control efforts should include some region-specific strategies to effectively control this disease vector.

    • Supplemental Materials (PDF 682 KB)
    • Supplemental Materials (PDF 301 KB)

Author Notes

Address correspondence to Winnie A. Okeyo, Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Kisumu, Kenya. E-mail: okeyo.winnie@gmail.com

Financial support: NIH Grant no. U01 AI115648; NIH-Fogarty Global Infectious Diseases Training Grant (D43TW007391).

Authors’ addresses: Winnie A. Okeyo, Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Kisumu, Kenya, Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya, and Yale School of Public Health, Yale University, New Haven, CT, E-mail: okeyo.winnie@gmail.com. Norah P. Saarman, Kirstin Dion, Michael Mengual, and Adalgisa Caccone, Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, E-mails: norah.saarman@yale.edu, kirstin.dion@yale.edu, michael.mengual@yale.edu, and adalgisa.caccone@yale.edu. Rosemary Bateta, Sylvance Okoth, and Grace Murilla, Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya, E-mails: batetarw@yahoo.com, sokotho@gmail.com, and gmurilla@yahoo.co.uk. Paul O. Mireji, Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya, and Yale School of Public Health, Yale University, New Haven, CT, E-mail: mireji.paul@gmail.com. Collins Ouma, School of Public Health and Community Development, Maseno University, Kisumu, Kenya, E-mail: profcollinsouma@gmail.com. Serap Aksoy, Yale School of Public Health, Yale University, New Haven, CT, E-mail: serap.aksoy@yale.edu.

These authors contributed equally to this work.

  • 1.

    Buguet A, Mpanzou G, Bentivoglio M, 2014. Human african trypanosomiasis: a highly neglected neurological disease. Bentivoglio M, Cavalheiro E, Kristensson K, Patel N, eds. Neglected Tropical Diseases and Conditions of the Nervous System. New York, NY: Springer, 165181.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Courtin F et al. 2015. Reducing human-tsetse contact significantly enhances the efficacy of sleeping sickness active screening campaigns: a promising result in the context of elimination. PLoS Negl Trop Dis 9: e0003727.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Alsan M, 2015. The effect of the tsetse fly on African development. Am Econ Rev 105: 382410.

  • 4.

    Fèvre EM, Wissmann BV, Welburn SC, Lutumba P, 2008. The burden of human African trypanosomiasis. PLoS Negl Trop Dis 2: e333.

  • 5.

    Muhanguzi D, Picozzi K, Hattendorf J, Thrusfield M, Kabasa JD, Waiswa C, Welburn SC, 2014. The burden and spatial distribution of bovine African trypanosomes in small holder crop-livestock production systems in Tororo District, south-eastern Uganda. Parasit Vectors 7: 603.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    La Greca F, Magez S, 2011. Vaccination against trypanosomiasis. Hum Vaccin 7: 12251233.

  • 7.

    Aksoy S, 2003. Control of tsetse flies and trypanosomes using molecular genetics. Vet Parasitol 115: 125145.

  • 8.

    CDC, 2015. Parasites—Africa trypanosomiasis (Also Known as Sleeping Sickness). Centres for Disease Control and Prevention. Available at: https://www.cdc.gov/parasites/sleepingsickness/treatment.html. Accessed July 13, 2017.

    • PubMed
    • Export Citation
  • 9.

    Anene BM, Onah DN, Nawa Y, 2001. Drug resistance in pathogenic African trypanosomes: what hopes for the future? Vet Parasitol 96: 83100.

  • 10.

    Wilkinson SR, Kelly JM, 2009. Trypanocidal drugs: mechanisms, resistance and new targets. Expert Rev Mol Med 11: e31.

  • 11.

    Barrett MP, Vincent IM, Burchmore RJ, Kazibwe AJ, Matovu E, 2011. Drug resistance in human African trypanosomiasis. Future Microbiol 6: 10371047.

  • 12.

    Welburn SC, Molyneux DH, Maudlin I, 2016. Beyond tsetse—implications for research and control of human African trypanosomiasis epidemics. Trends Parasitol 32: 230241.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Aksoy S, Caccone A, Galvani AP, Okedi LM, 2013. Glossina fuscipes populations provide insights for human African trypanosomiasis transmission in Uganda. Trends Parasitol 29: 394406.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Brightwell R, Dransfield R, 1997. Odour attractants for tsetse: Glossina austeni, G. brevipalpis and G. swynnertoni. Med Vet Entomol 11: 297299.

  • 15.

    Dransfield RD, Brightwell R, Kyorku C, Williams B, 1990. Control of tsetsefly (Diptera: Glossinidae) populations using traps at Nguruman, south-west Kenya. Bull Entomol Res 265276.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Echessah PN, Swallow BM, Kamara DW, Curry JJ, 1997. Willingness to contribute labor and money to tsetse control: application of contingent valuation in Busia District, Kenya. World Dev 25: 239253.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Maudlin I, 2006. African trypanosomiasis. Ann Trop Med Parasitol 100: 679701.

  • 18.

    Muriuki GW, Njoka TJ, Reid RS, Nyariki DM, 2005. Tsetse control and land-use change in Lambwe valley, south-western Kenya. Agric Ecosyst Environ 106: 99107.

  • 19.

    Schofield CJ, Kabayo JP, 2008. Trypanosomiasis vector control in Africa and Latin America. Parasit Vectors 1: 24.

  • 20.

    Torr SJ, Hargrove JW, Vale GA, 2005. Towards a rational policy for dealing with tsetse. Trends Parasitol 21: 537541.

  • 21.

    Vreysen MJ, 2001. Principles of area-wide integrated tsetse fly control using the sterile insect technique. Med Trop (Mars) 61: 397411.

  • 22.

    Wellde BT, Waema D, Chumo DA, Reardon MJ, Oloo F, Njogu AR, Opiyo EA, Mugutu S, 1989. Review of tsetse control measures taken in the Lambwe Valley in 1980–1984. Ann Trop Med Parasitol 83 (Suppl 1): 119125.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Mbewe NJ, Saini RK, Torto B, Irungu J, Yusuf AA, Pirk CWW, 2018. Sticky small target: an effective sampling tool for tsetse fly Glossina fuscipes fuscipes Newstead, 1910. Parasit Vectors 11: 268.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Shaw AP, Tirados I, Mangwiro CT, Esterhuizen J, Lehane MJ, Torr SJ, Kovacic V, 2015. Costs of using “tiny targets” to control Glossina fuscipes fuscipes, a vector of gambiense sleeping sickness in Arua District of Uganda. PLoS Negl Trop Dis 9: e0003624.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Lindh JM, Torr SJ, Vale GA, Lehane MJ, 2009. Improving the cost-effectiveness of artificial visual baits for controlling the tsetse fly Glossina fuscipes fuscipes. PLoS Negl Trop Dis 3: e474.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Arora AK, Douglas AE, 2017. Hype or opportunity? Using microbial symbionts in novel strategies for insect pest control. J Insect Physiol 103: 1017.

  • 27.

    WHO, 2017. Human African trypanosomiasis. WHO Factsheets. Available at: http://www.who.int/mediacentre/factsheets/fs259/en/. Accessed May 2, 2017.

    • PubMed
    • Export Citation
  • 28.

    Messina JP, Moore NJ, DeVisser MH, McCord PF, Walker ED, 2012. Climate change and risk projection: dynamic spatial models of tsetse and African trypanosomiasis in Kenya. Ann Assoc Am Geogr 102: 10381048.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Wolf T, Wichelhaus T, Göttig S, Kleine C, Brodt HR, Just-Nuebling G, 2012. Trypanosoma brucei rhodesiense infection in a German traveller returning from the Masai Mara area, Kenya, January 2012. Euro Surveill 17: pii:20114.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Ouma JO, Marquez JG, Krafsur ES, 2005. Macrogeographic population structure of the tsetse fly, Glossina pallidipes (Diptera: Glossinidae). Bull Entomol Res 95: 437447.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    FAO, 2006. Tsetse Fly Habitat and Land Cover: An Analysis at Continental Level. Rome, Italy: GLCN, FAO, 116.

    • PubMed
    • Export Citation
  • 32.

    Ouma JO, Krafsur ES, 2010. The influence of temporal and seasonal changes on genetic diversity and population structure of the tsetse fly, Glossina pallidipes in Kenya. East African Agric Forum J 77: 5968.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Williams B, Dransfield R, Brightwell R, 1990. Monitoring tsetse fly populations. I. The intrinsic variability of trap catches of Glossina pallidipes at Nguruman, Kenya. Med Vet Entomol 4: 167179.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Ouma JO, Marquez JG, Krafsur ES, 2006. Microgeographical breeding structure of the tsetse fly, Glossina pallidipes in south-western Kenya. Med Vet Entomol 20: 138149.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Swai ES, Kaaya JE, 2012. A parasitological survey for bovine trypanosomosis in the livestock/wildlife ecozone of northern Tanzania. Vet World 5: 459464.

  • 36.

    Hyseni C, Kato AB, Okedi LM, Masembe C, Ouma JO, Aksoy S, Caccone A, 2012. The population structure of Glossina fuscipes fuscipes in the Lake Victoria basin in Uganda: implications for vector control. Parasit Vectors 5: 222.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Echodu R, Sistrom M, Hyseni C, Enyaru J, Okedi L, Aksoy S, Caccone A, 2013. Genetically distinct Glossina fuscipes fuscipes populations in the Lake Kyoga region of Uganda and its relevance for human African trypanosomiasis. BioMed Res Int 2013: 614721.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Ouma JO, Beadell JS, Hyseni C, Okedi LM, Krafsur ES, Aksoy S, Caccone A, 2011. Genetic diversity and population structure of Glossina pallidipes in Uganda and western Kenya. Parasit Vectors 4: 122.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Krafsur ES, 2002. Population structure of the tsetse fly Glossina pallidipes estimated by allozyme, microsatellite and mitochondrial gene diversities. Insect Mol Biol 11: 3745.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Solano P, Ravel S, de Meeus T, 2010. How can tsetse population genetics contribute to African trypanosomiasis control? Trends Parasitol 26: 255263.

  • 41.

    Solano P et al. 2010. Population genetics as a tool to select tsetse control strategies: suppression or eradication of Glossina palpalis gambiensis in the Niayes of Senegal. PLoS Negl Trop Dis 4: e692.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Okeyo WA et al. 2017. Temporal genetic differentiation in Glossina pallidipes tsetse fly populations in Kenya. Parasit Vectors 10: 471.

  • 43.

    Dransfield RD, Brightwell R, Kiilu J, Chaudhury MF, Abie DAAD, 1989. Size and mortality rates of Glossina pallidipes in the semi‐arid zone of southwestern Kenya. Med Vet Entomol 3: 8395.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P, 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4: 535538.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Brookfield JF, 1996. A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5: 453455.

  • 46.

    Rousset F, 2008. genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8: 103106.

  • 47.

    Benjamini Y, Hochberg Y, 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57: 289300.

  • 48.

    Goudet J, 2001. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available at: https://www2.unil.ch/popgen/softwares/fstat.htm. Accessed February 22, 2017.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Excoffier L, Lischer HE, 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10: 564567.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Kalinowski ST, Wagner AP, Taper ML, 2006. ML-RELATE: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Notes 6: 576579.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Evanno G, Regnaut S, Goudet J, 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 26112620.

  • 52.

    Earl DA, vonHoldt BM, 2011. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4: 359361.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I, 2015. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15: 11791191.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Jombart T, Devillard S, Balloux F, 2010. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11: 94.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Jombart T, 2008. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24: 14031405.

  • 56.

    R Core Team, 2011. R: A Language And Environment For Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available at: http://www.R-project.org/. Accessed February 14, 2017.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Jombart T, Collins C, 2015. A Tutorial for Discriminant Analysis of Principal Components (DAPC) Using Adegenet 2.0.0. London, United Kingdom: Imperial College London, MRC Centre for Outbreak Analysis and Modelling, 143.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Wright S, 1951. The genetical structure of populations. Ann Eugen 15: 323354.

  • 59.

    Weir BS, Cockerham CC, 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 13581370.

  • 60.

    Jensen JL, Bohonak AJ, Kelley ST, 2005. Isolation by distance, web service. BMC Genet 6: 13.

  • 61.

    Smouse PE, Long JC, Sokal RR, 1986. Multiple regression and correlation extensions of the mantel test of matrix correspondence. Syst Zool 35: 627632.

  • 62.

    Ersts PJ, 2011. Geographic Distance Matrix Generator (Version 1.2. 3). New York City, NY: American Museum of Natural History.

  • 63.

    Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A, 2004. GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95: 536539.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Duchesne P, Turgeon J, 2009. FLOCK: a method for quick mapping of admixture without source samples. Mol Ecol Resour 9: 13331344.

  • 65.

    Paetkau D, Slade R, Burden M, Estoup A, 2004. Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13: 5565.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Rannala B, Mountain JL, 1997. Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94: 91979201.

  • 67.

    DeVisser MH, Messina JP, 2009. Optimum land cover products for use in a Glossina-morsitans habitat model of Kenya. Int J Health Geogr 8: 39.

  • 68.

    Osano PM, Said MY, deLeeuw J, Moiko SS, OleKaelo D, Schomers S, Birner R, Ogutu JO, 2013. Pastoralism and ecosystem-based adaptation in Kenyan Masailand. Int J Clim Chang Strateg Manag 5: 198214.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Wamwiri FN, Changasi RE, 2016. Tsetse flies (Glossina) as vectors of human African trypanosomiasis: a review. Biomed Res Int 2016: 8.

  • 70.

    Zhivotovsky LA, 2015. Relationships between Wright’s FST and FIS statistics in a context of Wahlund effect. J Hered 106: 306309.

  • 71.

    Alam U et al. 2012. Implications of microfauna-host interactions for trypanosome transmission dynamics in Glossina fuscipes fuscipes in Uganda. Appl Environ Microbiol 78: 46274637.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Krafsur ES, Wohlford DL, 1999. Breeding structure of Glossina pallidipes populations evaluated by mitochondrial variation. J Hered 90: 635642.

  • 73.

    Ruiz Guajardo JC, Schnabel A, Ennos R, Preuss S, Otero-Arnaiz A, Stone G, 2010. Landscape genetics of the key African acacia species Senegalia mellifera (Vahl)—the importance of the Kenyan Rift Valley. Mol Ecol 19: 51265139.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Bertola LD et al. 2011. Genetic diversity, evolutionary history and implications for conservation of the lion (Panthera leo) in west and central Africa. J Biogeography 38: 13561367.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Brown DM, Brenneman RA, Koepfli KP, Pollinger JP, Milá B, Georgiadis NJ, Louis EE Jr., Grether GF, Jacobs DK, Wayne RK, 2007. Extensive population genetic structure in the giraffe. BMC Biol 5: 57.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Dubach J, Patterson BD, Briggs MB, Venzke K, Flamand J, Stander P, Scheepers L, Kays RW, 2005. Molecular genetic variation across the southern and eastern geographic ranges of the African lion, Panthera leo. Conserv Genet Resour 6: 1524.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Evans BJ, Bliss SM, Mendel SA, Tinsley RC, 2011. The Rift Valley is a major barrier to dispersal of African clawed frogs (Xenopus) in Ethiopia. Mol Ecol 20: 42164230.

  • 78.

    Franco JR, Simarro PP, Diarra A, Jannin JG, 2005. Epidemiology of human African trypanosomiasis. Clin Epidemiol 6: 257275.

  • 79.

    Lehmann T, Hawley WA, Grebert H, Danga M, Atieli F, Collins FH, 1999. The Rift Valley complex as a barrier to gene flow for Anopheles gambiae in Kenya. J Hered 90: 613621.

  • 80.

    Lehmann T, Licht M, Elissa N, Maega BTA, Chimumbwa JM, Watsenga FT, Wondji CS, Simard F, Hawley WA, 2003. Population structure of Anopheles gambiae in Africa. J Hered 94: 133147.

  • 81.

    Cano J, Descalzo , Ndong-mabale N, Ndong-asumu P, Bobuakasi L, Nzambo-ondo S, Benito A, Roche J, 2007. Predicted distribution and movement of Glossina palpalis palpalis (Diptera: Glossinidae) in the wet and dry seasons in the Kogo trypanosomiasis focus (Equatorial Guinea). J Vector Ecol 32: 218225.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Wint W, Rogers D, 2000. Predicted Distributions of Tsetse in Africa. Oxford, United Kingdom: FAO Consultants’ Report, ERGO Ltd and the TALA Research Group.

Past two years Past Year Past 30 Days
Abstract Views 1699 1481 71
Full Text Views 689 17 4
PDF Downloads 164 12 0
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save