Assessment of Real-Time Polymerase Chain Reaction for the Detection of Trichostrongylus spp. DNA from Human Fecal Samples

Francesca Perandin Centro per le Malattie Tropicali, Ospedale Sacro Cuore-Don Calabria, Verona, Italy

Search for other papers by Francesca Perandin in
Current site
Google Scholar
PubMed
Close
,
Elena Pomari Centro per le Malattie Tropicali, Ospedale Sacro Cuore-Don Calabria, Verona, Italy

Search for other papers by Elena Pomari in
Current site
Google Scholar
PubMed
Close
,
Camilla Bonizzi Centro per le Malattie Tropicali, Ospedale Sacro Cuore-Don Calabria, Verona, Italy

Search for other papers by Camilla Bonizzi in
Current site
Google Scholar
PubMed
Close
,
Manuela Mistretta Centro per le Malattie Tropicali, Ospedale Sacro Cuore-Don Calabria, Verona, Italy

Search for other papers by Manuela Mistretta in
Current site
Google Scholar
PubMed
Close
,
Fabio Formenti Centro per le Malattie Tropicali, Ospedale Sacro Cuore-Don Calabria, Verona, Italy

Search for other papers by Fabio Formenti in
Current site
Google Scholar
PubMed
Close
, and
Zeno Bisoffi Centro per le Malattie Tropicali, Ospedale Sacro Cuore-Don Calabria, Verona, Italy

Search for other papers by Zeno Bisoffi in
Current site
Google Scholar
PubMed
Close
Restricted access

Sporadic cases of Tricostrongylosis are reported in humans. Diagnosis of enteric Trichostrongylus relies primarily on coproscopic analysis but morphological identification is difficult because of similarity among nematode species. The method is time consuming and requires some expertise. To overcome these limitations, we developed a molecular approach by real-time polymerase chain reaction (PCR) to provide a rapid, specific, and sensitive tool to detect Trichostrongylus spp. in human feces. We designed primers and probe specific for Trichostrongylus rDNA region 5.8S and internal transcribed spacer 2. Three Italian family clusters were analyzed and DNA sequencing was performed to confirm real-time PCR results comparing with known GenBank sequence data. Sequence analysis showed ≥ 99% identity to Trichostrongylus colubriformis and Trichostrongylus axei. This study provides a molecular methodology suitable for fast and specific detection of Trichostrongylus in fecal specimens and to distinguish the zoonotic species.

    • Supplemental Materials (PDF 1829 KB)

Author Notes

Address correspondence to Francesca Perandin or Elena Pomari, Centro per le Malattie Tropicali, Ospedale Classificato Equiparato, “Sacro Cuore-Don Calabria,” Presidio Ospedaliero Accreditato-Regione Veneto, Via Don A. Sempreboni, 5, I-37024 Negrar, Verona, Italy. E-mails: francesca.perandin@sacrocuore.it and elena.pomari@sacrocuore.it

Authors’ addresses: Francesca Perandin, Elena Pomari, Camilla Bonizzi, Manuela Mistretta, Fabio Formenti, and Zeno Bisoffi, Centro per le Malattie Tropicali, Ospedale Sacro Cuore-Don Calabria Negrar, Verona, Italy, E-mails: francesca.perandin@sacrocuore.it, elena.pomari@sacrocuore.it, camilla.bonizzi@gmail.com, manuela.mistretta@sacrocuore.it, fabio.formenti@sacrocuore.it, and zeno.bisoffi@sacrocuore.it.

  • 1.

    Phosuk I, Intapan PM, Sanpool O, Janwan P, Thanchomnang T, Sawanyawisuth K, Morakote N, Maleewong W, 2013. Molecular evidence of Trichostrongylus colubriformis and Trichostrongylus axei infections in humans from Thailand and Lao PDR. Am J Trop Med Hyg 89: 376379.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Lattes S, Ferte H, Delaunay P, Depaquit J, Vassallo M, Vittier M, Kokcha S, Coulibaly E, Marty P, 2011. Trichostrongylus colubriformis nematode infections in humans, France. Emerg Infect Dis 17: 13011302.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Thibert JB, Guiguen C, Gangneux JP, 2006. Human trichostrongyloidosis: case report and microscopic difficulties to identify ankylostomidae eggs [in French]. Ann Biol Clin (Paris) 64: 281285.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Wall EC, Bhatnagar N, Watson J, Doherty T, 2011. An unusual case of hypereosinophilia and abdominal pain: an outbreak of Trichostrongylus imported from New Zealand. J Travel Med 18: 5960.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Yong TS, Lee JH, Sim S, Lee J, Min DY, Chai JY, Eom KS, Sohn WM, Lee SH, Rim HJ, 2007. Differential diagnosis of Trichostrongylus and hookworm eggs via PCR using ITS-1 sequence. Korean J Parasitol 45: 6974.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    The Centers for Disease Control and Prevention, 2016. Trichostrongylosis. Available at: https://www.cdc.gov/dpdx/trichostrongylosis/index.html. Accessed July 20, 2017.

    • PubMed
    • Export Citation
  • 7.

    Buonfrate D, Angheben A, Gobbi F, Mistretta M, Degani M, Bisoffi Z, 2017. Four clusters of Trichostrongylus infection diagnosed in a single center, in Italy. Infection 45: 233236.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Cancrini G, Boemi G, Iori A, Corselli A, 1982. Human infestations by Trichostrongylus axei, T. capricola and T. vitrinus: 1st report in Italy [in Italian]. Parassitologia 24: 145149.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Sato M, Yoonuan T, Sanguankiat S, Nuamtanong S, Pongvongsa T, Phimmayoi I, Phanhanan V, Boupha B, Moji K, Waikagul J, 2011. Short report: human Trichostrongylus colubriformis infection in a rural village in Laos. Am J Trop Med Hyg 84: 5254.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Milhes M et al.., 2017. A real-time PCR approach to identify anthelmintic-resistant nematodes in sheep farms. Parasitol Res 116: 909920.

  • 11.

    Amar CF, East CL, Gray J, Iturriza-Gomara M, Maclure EA, McLauchlin J, 2007. Detection by PCR of eight groups of enteric pathogens in 4,627 faecal samples: re-examination of the English case-control Infectious Intestinal Disease Study (1993–1996). Eur J Clin Microbiol Infect Dis 26: 311323.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Bruijnesteijn van Coppenraet LE, Wallinga JA, Ruijs GJ, Bruins MJ, Verweij JJ, 2009. Parasitological diagnosis combining an internally controlled real-time PCR assay for the detection of four protozoa in stool samples with a testing algorithm for microscopy. Clin Microbiol Infect 15: 869874.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Gunson RN, Bennett S, Maclean A, Carman WF, 2008. Using multiplex real time PCR in order to streamline a routine diagnostic service. J Clin Virol 43: 372375.

  • 14.

    Liu YT, 2008. A technological update of molecular diagnostics for infectious diseases. Infect Disord Drug Targets 8: 183188.

  • 15.

    Muldrew KL, 2009. Molecular diagnostics of infectious diseases. Curr Opin Pediatr 21: 102111.

  • 16.

    Verweij JJ, Blange RA, Templeton K, Schinkel J, Brienen EA, van Rooyen MA, van Lieshout L, Polderman AM, 2004. Simultaneous detection of Entamoeba histolytica, Giardia lamblia, and Cryptosporidium parvum in fecal samples by using multiplex real-time PCR. J Clin Microbiol 42: 12201223.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Niesters HG, 2002. Clinical virology in real time. J Clin Virol 25 (Suppl 3): S3S12.

Past two years Past Year Past 30 Days
Abstract Views 344 309 21
Full Text Views 736 14 1
PDF Downloads 113 7 1
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save