Trypanosoma cruzi Calreticulin Topographical Variations in Parasites Infecting Murine Macrophages

Andrea González Programa Disciplinario de Inmunología, Programa de Genética Humana, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas; Laboratorio de Análisis de Imágenes Científicas (SCIAN), Instituto de Neurociencias Biomédicas, Facultad de Medicina; Departamento de Medicina Preventiva Animal, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Chile

Search for other papers by Andrea González in
Current site
Google Scholar
PubMed
Close
,
Carolina Valck Programa Disciplinario de Inmunología, Programa de Genética Humana, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas; Laboratorio de Análisis de Imágenes Científicas (SCIAN), Instituto de Neurociencias Biomédicas, Facultad de Medicina; Departamento de Medicina Preventiva Animal, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Chile

Search for other papers by Carolina Valck in
Current site
Google Scholar
PubMed
Close
,
Gittith Sánchez Programa Disciplinario de Inmunología, Programa de Genética Humana, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas; Laboratorio de Análisis de Imágenes Científicas (SCIAN), Instituto de Neurociencias Biomédicas, Facultad de Medicina; Departamento de Medicina Preventiva Animal, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Chile

Search for other papers by Gittith Sánchez in
Current site
Google Scholar
PubMed
Close
,
Steffen Härtel Programa Disciplinario de Inmunología, Programa de Genética Humana, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas; Laboratorio de Análisis de Imágenes Científicas (SCIAN), Instituto de Neurociencias Biomédicas, Facultad de Medicina; Departamento de Medicina Preventiva Animal, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Chile

Search for other papers by Steffen Härtel in
Current site
Google Scholar
PubMed
Close
,
Jorge Mansilla Programa Disciplinario de Inmunología, Programa de Genética Humana, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas; Laboratorio de Análisis de Imágenes Científicas (SCIAN), Instituto de Neurociencias Biomédicas, Facultad de Medicina; Departamento de Medicina Preventiva Animal, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Chile

Search for other papers by Jorge Mansilla in
Current site
Google Scholar
PubMed
Close
,
Galia Ramírez Programa Disciplinario de Inmunología, Programa de Genética Humana, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas; Laboratorio de Análisis de Imágenes Científicas (SCIAN), Instituto de Neurociencias Biomédicas, Facultad de Medicina; Departamento de Medicina Preventiva Animal, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Chile

Search for other papers by Galia Ramírez in
Current site
Google Scholar
PubMed
Close
,
María Soledad Fernández Programa Disciplinario de Inmunología, Programa de Genética Humana, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas; Laboratorio de Análisis de Imágenes Científicas (SCIAN), Instituto de Neurociencias Biomédicas, Facultad de Medicina; Departamento de Medicina Preventiva Animal, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Chile

Search for other papers by María Soledad Fernández in
Current site
Google Scholar
PubMed
Close
,
José Luis Arias Programa Disciplinario de Inmunología, Programa de Genética Humana, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas; Laboratorio de Análisis de Imágenes Científicas (SCIAN), Instituto de Neurociencias Biomédicas, Facultad de Medicina; Departamento de Medicina Preventiva Animal, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Chile

Search for other papers by José Luis Arias in
Current site
Google Scholar
PubMed
Close
,
Norbel Galanti Programa Disciplinario de Inmunología, Programa de Genética Humana, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas; Laboratorio de Análisis de Imágenes Científicas (SCIAN), Instituto de Neurociencias Biomédicas, Facultad de Medicina; Departamento de Medicina Preventiva Animal, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Chile

Search for other papers by Norbel Galanti in
Current site
Google Scholar
PubMed
Close
, and
Arturo Ferreira Programa Disciplinario de Inmunología, Programa de Genética Humana, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas; Laboratorio de Análisis de Imágenes Científicas (SCIAN), Instituto de Neurociencias Biomédicas, Facultad de Medicina; Departamento de Medicina Preventiva Animal, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Chile

Search for other papers by Arturo Ferreira in
Current site
Google Scholar
PubMed
Close
Restricted access

Trypanosoma cruzi calreticulin (TcCRT), a 47-kDa chaperone, translocates from the endoplasmic reticulum to the area of flagellum emergence. There, it binds to complement components C1 and mannan-binding lectin (MBL), thus acting as a main virulence factor, and inhibits the classical and lectin pathways. The localization and functions of TcCRT, once the parasite is inside the host cell, are unknown. In parasites infecting murine macrophages, polyclonal anti-TcCRT antibodies detected TcCRT mainly in the parasite nucleus and kinetoplast. However, with a monoclonal antibody (E2G7), the resolution and specificity of the label markedly improved, and TcCRT was detected mainly in the parasite kinetoplast. Gold particles, bound to the respective antibodies, were used as probes in electron microscopy. This organelle may represent a stopover and accumulation site for TcCRT, previous its translocation to the area of flagellum emergence. Finally, early during T. cruzi infection and by unknown mechanisms, an important decrease in the number of MHC-I positive host cells was observed.

Author Notes

* Address correspondence to Arturo Ferreira or Norbel Galanti, Independencia 1027, Independencia, Santiago, Chile. E-mails: aferreir@med.uchile.cl or ngalanti@med.uchile.cl

Financial support: This work was supported by FONDECYT grant 1130099 (AF) and Associative Research ACT-112 (AF, NG), FONDECYT grant 1130113 (NG), and also CONICYT fellowships: For Doctoral Studies in Chile (21080219) and Doctoral Thesis Support (AT 24100233) (AG).

Authors' addresses: Andrea González, Caroline Valck, and Arturo Ferreira, University of Chile, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Santiago, Chile, E-mails: angozu@ciq.uchile.cl, cvalck@gmail.com, and aferreir@med.uchile.cl. Gittith Sánchez, University of Chile, Program of Human Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Santiago, Chile, E-mail: gsanchez@med.uchile.cl. Steffen Härtel and Jorge Mansilla, University of Chile, Biomedical Neuroscience Institute, Institute of Biomedical Sciences, Faculty of Medicine, Santiago, Chile, E-mails: shartel@med.uchile.cl and jorgemansillas@gmail.com. Galia Ramírez, University of Chile, Department of Preventing Animal Medicine, Faculty of Veterinarian Medicine, Santiago, Chile, E-mail: galiaramirez@gmail.com. María Soledad Fernández and José L. Arias, University of Chile, Department of Animal Biological Sciences, Faculty of Veterinarian Medicine, Santiago, Chile, E-mails: sofernan@uchile.cl and jarias@uchile.cl. Norbel Galanti, University of Chile, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Santiago, Chile, E-mail: ngalanti@med.uchile.cl.

  • 1.

    Clayton J, 2010. Chagas disease 101. Nature 465: S4S5.

  • 2.

    Clayton J, 2010. Chagas disease: pushing through the pipeline. Nature 465: S12S15.

  • 3.

    Coura JR, Vinas PA, 2010. Chagas disease: a new worldwide challenge. Nature 465: S6S7.

  • 4.

    Tyler KM, Engman DM, 2001. The life cycle of Trypanosoma cruzi revisited. Int J Parasitol 31: 472481.

  • 5.

    Ramirez G, Valck C, Molina MC, Ribeiro CH, Lopez N, Sanchez G, Ferreira VP, Billetta R, Aguilar L, Maldonado I, Cattan P, Schwaeble W, Ferreira A, 2011. Trypanosoma cruzi calreticulin: a novel virulence factor that binds complement C1 on the parasite surface and promotes infectivity. Immunobiology 216: 265273.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Ferreira V, Molina MC, Valck C, Rojas A, Aguilar L, Ramirez G, Schwaeble W, Ferreira A, 2004. Role of calreticulin from parasites in its interaction with vertebrate hosts. Mol Immunol 40: 12791291.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Michalak M, Corbett EF, Mesaeli N, Nakamura K, Opas M, 1999. Calreticulin: one protein, one gene, many functions. Biochem J 344: 281292.

  • 8.

    Sonnichsen B, Fullekrug J, Nguyen Van P, Diekmann W, Robinson DG, Mieskes G, 1994. Retention and retrieval: both mechanisms cooperate to maintain calreticulin in the endoplasmic reticulum. J Cell Sci 107: 27052717.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Souto-Padron T, Labriola CA, de Souza W, 2004. Immunocytochemical localization of calreticulin in Trypanosoma cruzi. Histochem Cell Biol 122: 563569.

  • 10.

    Mesaeli N, Nakamura K, Zvaritch E, Dickie P, Dziak E, Krause KH, Opas M, MacLennan DH, Michalak M, 1999. Calreticulin is essential for cardiac development. J Cell Biol 144: 857868.

  • 11.

    Ferreira V, Valck C, Sanchez G, Gingras A, Tzima S, Molina MC, Sim R, Schwaeble W, Ferreira A, 2004. The classical activation pathway of the human complement system is specifically inhibited by calreticulin from Trypanosoma cruzi. J Immunol 172: 30423050.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Valck C, Ramirez G, Lopez N, Ribeiro CH, Maldonado I, Sanchez G, Ferreira VP, Schwaeble W, Ferreira A, 2010. Molecular mechanisms involved in the inactivation of the first component of human complement by Trypanosoma cruzi calreticulin. Mol Immunol 47: 15161521.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Ramirez G, Valck C, Ferreira VP, Lopez N, Ferreira A, 2012. Extracellular Trypanosoma cruzi calreticulin in the host-parasite interplay. Trends Parasitol 27: 115122.

  • 14.

    Sosoniuk E, Vallejos G, Kenawy H, Gaboriaud C, Thielens N, Fujita T, Schwaeble W, Ferreira A, Valck C, 2014. Trypanosoma cruzi calreticulin inhibits the complement lectin pathway activation by direct interaction with L-ficolin. Mol Immunol 60: 8085.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Lopez NC, Valck C, Ramirez G, Rodriguez M, Ribeiro C, Orellana J, Maldonado I, Albini A, Anacona D, Lemus D, Aguilar L, Schwaeble W, Ferreira A, 2010. Antiangiogenic and antitumor effects of Trypanosoma cruzi calreticulin. PLoS Negl Trop Dis 4: e730.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Molina MC, Ferreira V, Valck C, Aguilar L, Orellana J, Rojas A, Ramirez G, Billetta R, Schwaeble W, Lemus D, Ferreira A, 2005. An in vivo role for Trypanosoma cruzi calreticulin in antiangiogenesis. Mol Biochem Parasitol 140: 133140.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Ferreira V, Molina MC, Schwaeble W, Lemus D, Ferreira A, 2005. Does Trypanosoma cruzi calreticulin modulate the complement system and angiogenesis? Trends Parasitol 21: 169174.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Sanchez Valdez FJ, Perez Brandan C, Zago MP, Labriola C, Ferreira A, Basombrio MA, 2013. Trypanosoma cruzi carrying a monoallelic deletion of the calreticulin (TcCRT) gene are susceptible to complement mediated killing and defective in their metacyclogenesis. Mol Immunol 53: 198205.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Sanchez-Valdez FJ, Perez Brandan C, Ramirez G, Uncos AD, Zago MP, Cimino RO, Cardozo RM, Marco JD, Ferreira A, Basombrio MA, 2014. A monoallelic deletion of the TcCRT gene increases the attenuation of a cultured Trypanosoma cruzi strain, protecting against an in vivo virulent challenge. PLoS Negl Trop Dis 8: e2696.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Aguillon JC, Ferreira L, Perez C, Colombo A, Molina MC, Wallace A, Solari A, Carvallo P, Galindo M, Galanti N, Orn A, Billetta R, Ferreira A, 2000. Tc45, a dimorphic Trypanosoma cruzi immunogen with variable chromosomal localization, is calreticulin. Am J Trop Med Hyg 63: 306312.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Aguilar L, Ramirez G, Valck C, Molina MC, Rojas A, Schwaeble W, Ferreira V, Ferreira A, 2005. F(ab′)2 antibody fragments against Trypanosoma cruzi calreticulin inhibit its interaction with the first component of human complement. Biol Res 38: 187195.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Aguillon JC, Harris R, Molina MC, Colombo A, Cortes C, Hermosilla T, Carreno P, Orn A, Ferreira A, 1997. Recognition of an immunogenetically selected Trypanosoma cruzi antigen by seropositive chagasic human sera. Acta Trop 63: 159166.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Kohler G, Milstein C, 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495497.

  • 24.

    Yasumura YK, Kawakita M, 1963. The research for the SV40 by means of tissue culture technique. Nippon Rinsho 21: 12011219.

  • 25.

    Paulsson K, Wang P, 2003. Chaperones and folding of MHC class I molecules in the endoplasmic reticulum. Biochim Biophys Acta 1641: 112.

  • 26.

    Mancino L, Rizvi SM, Lapinski PE, Raghavan M, 2002. Calreticulin recognizes misfolded HLA-A2 heavy chains. Proc Natl Acad Sci USA 99: 59315936.

  • 27.

    Saito Y, Ihara Y, Leach MR, Cohen-Doyle MF, Williams DB, 1999. Calreticulin functions in vitro as a molecular chaperone for both glycosylated and non-glycosylated proteins. EMBO J 18: 67186729.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Wada I, Imai S, Kai M, Sakane F, Kanoh H, 1995. Chaperone function of calreticulin when expressed in the endoplasmic reticulum as the membrane-anchored and soluble forms. J Biol Chem 270: 2029820304.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Bayer-Santos E, Aguilar-Bonavides C, Rodrigues SP, Cordero EM, Marques AF, Varela-Ramirez A, Choi H, Yoshida N, da Silveira JF, Almeida IC, 2012. Proteomic analysis of Trypanosoma cruzi secretome: characterization of two populations of extracellular vesicles and soluble proteins. J Proteome Res 12: 883897.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Van Overtvelt L, Andrieu M, Verhasselt V, Connan F, Choppin J, Vercruysse V, Goldman M, Hosmalin A, Vray B, 2002. Trypanosoma cruzi down-regulates lipopolysaccharide-induced MHC class I on human dendritic cells and impairs antigen presentation to specific CD8(+) T lymphocytes. Int Immunol 14: 11351144.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Buckner FS, Wipke BT, Van Voorhis WC, 1997. Trypanosoma cruzi infection does not impair major histocompatibility complex class I presentation of antigen to cytotoxic T lymphocytes. Eur J Immunol 27: 25412548.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE, Bratton DL, Oldenborg PA, Michalak M, Henson PM, 2005. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123: 321334.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Tarr JM, Young PJ, Morse R, Shaw DJ, Haigh R, Petrov PG, Johnson SJ, Winyard PG, Eggleton P, 2010. A mechanism of release of calreticulin from cells during apoptosis. J Mol Biol 401: 799812.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Kuraishi T, Manaka J, Kono M, Ishii H, Yamamoto N, Koizumi K, Shiratsuchi A, Lee BL, Higashida H, Nakanishi Y, 2007. Identification of calreticulin as a marker for phagocytosis of apoptotic cells in Drosophila. Exp Cell Res 313: 500510.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Landfear SM, Ignatushchenko M, 2001. The flagellum and flagellar pocket of trypanosomatids. Mol Biochem Parasitol 115: 117.

  • 36.

    Dedhar S, Rennie PS, Shago M, Hagesteijn CY, Yang H, Filmus J, Hawley RG, Bruchovsky N, Cheng H, Matusik RJ, 1994. Inhibition of nuclear hormone receptor activity by calreticulin. Nature 367: 480483.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Burns K, Duggan B, Atkinson EA, Famulski KS, Nemer M, Bleackley RC, Michalak M, 1994. Modulation of gene expression by calreticulin binding to the glucocorticoid receptor. Nature 367: 476480.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Simpson L, 1987. The mitochondrial genome of kinetoplastid protozoa: genomic organization, transcription, replication, and evolution. Annu Rev Microbiol 41: 363382.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Arnaudeau S, Frieden M, Nakamura K, Castelbou C, Michalak M, Demaurex N, 2002. Calreticulin differentially modulates calcium uptake and release in the endoplasmic reticulum and mitochondria. J Biol Chem 277: 4669646705.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Jaime Renau Piqueras LM, 1998. Manual de Técnicas de Microscopía Electrónica (MET) Aplicaciones Biológicas.

  • 41.

    Roder G, Geironson L, Bressendorff I, Paulsson K, 2008. Viral proteins interfering with antigen presentation target the major histocompatibility complex class I peptide-loading complex. J Virol 82: 82468252.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Spooner RA, Smith DC, Easton AJ, Roberts LM, Lord JM, 2006. Retrograde transport pathways utilised by viruses and protein toxins. Virol J 3: 26.

Past two years Past Year Past 30 Days
Abstract Views 183 161 14
Full Text Views 525 12 0
PDF Downloads 93 9 0
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save