EXPERIMENTAL INFECTION OF CULEX ANNULIROSTRIS, CULEX GELIDUS, AND AEDES VIGILAX WITH A YELLOW FEVER/JAPANESE ENCEPHALITIS VIRUS VACCINE CHIMERA (CHIMERIVAX™-JE)

MARK REID Australian Army Malaria Institute, Brisbane, Queensland, Australia; School of Life Sciences, Queensland University of Technology, Brisbane, Queensland, Australia; Acambis Inc., Cambridge, Massachusetts

Search for other papers by MARK REID in
Current site
Google Scholar
PubMed
Close
,
DONNA MACKENZIE Australian Army Malaria Institute, Brisbane, Queensland, Australia; School of Life Sciences, Queensland University of Technology, Brisbane, Queensland, Australia; Acambis Inc., Cambridge, Massachusetts

Search for other papers by DONNA MACKENZIE in
Current site
Google Scholar
PubMed
Close
,
ANDREW BARON Australian Army Malaria Institute, Brisbane, Queensland, Australia; School of Life Sciences, Queensland University of Technology, Brisbane, Queensland, Australia; Acambis Inc., Cambridge, Massachusetts

Search for other papers by ANDREW BARON in
Current site
Google Scholar
PubMed
Close
,
NATALIE LEHMANN Australian Army Malaria Institute, Brisbane, Queensland, Australia; School of Life Sciences, Queensland University of Technology, Brisbane, Queensland, Australia; Acambis Inc., Cambridge, Massachusetts

Search for other papers by NATALIE LEHMANN in
Current site
Google Scholar
PubMed
Close
,
KYM LOWRY Australian Army Malaria Institute, Brisbane, Queensland, Australia; School of Life Sciences, Queensland University of Technology, Brisbane, Queensland, Australia; Acambis Inc., Cambridge, Massachusetts

Search for other papers by KYM LOWRY in
Current site
Google Scholar
PubMed
Close
,
JOHN AASKOV Australian Army Malaria Institute, Brisbane, Queensland, Australia; School of Life Sciences, Queensland University of Technology, Brisbane, Queensland, Australia; Acambis Inc., Cambridge, Massachusetts

Search for other papers by JOHN AASKOV in
Current site
Google Scholar
PubMed
Close
,
FARSHAD GUIRAKHOO Australian Army Malaria Institute, Brisbane, Queensland, Australia; School of Life Sciences, Queensland University of Technology, Brisbane, Queensland, Australia; Acambis Inc., Cambridge, Massachusetts

Search for other papers by FARSHAD GUIRAKHOO in
Current site
Google Scholar
PubMed
Close
, and
THOMAS P. MONATH Australian Army Malaria Institute, Brisbane, Queensland, Australia; School of Life Sciences, Queensland University of Technology, Brisbane, Queensland, Australia; Acambis Inc., Cambridge, Massachusetts

Search for other papers by THOMAS P. MONATH in
Current site
Google Scholar
PubMed
Close
Restricted access

Australian mosquitoes from which Japanese encephalitis virus (JEV) has been recovered (Culex annulirostris, Culex gelidus, and Aedes vigilax) were assessed for their ability to be infected with the ChimeriVax™-JE vaccine, with yellow fever vaccine virus 17D (YF 17D) from which the backbone of ChimeriVax™-JE vaccine is derived and with JEV-Nakayama. None of the mosquitoes became infected after being fed orally with 6.1 log10 plaque-forming units (PFU)/mL of ChimeriVax™-JE vaccine, which is greater than the peak viremia in vaccinees (mean peak viremia = 4.8 PFU/mL, range = 0–30 PFU/mL of 0.9 days mean duration, range = 0–11 days). Some members of all three species of mosquito became infected when fed on JEV-Nakayama, but only Ae. vigilax was infected when fed on YF 17D. The results suggest that none of these three species of mosquito are likely to set up secondary cycles of transmission of ChimeriVax™-JE in Australia after feeding on a viremic vaccinee.

Author Notes

  • 1

    Tsai TF, 1994. Japanese encephalitis vaccines. Plotkin SA, Mortimer EA, eds. Vaccines. Second edition. Philadelphia: W.B. Saunders, 671–713.

    • PubMed
    • Export Citation
  • 2

    Chambers TJ, Nestorowicz A, Mason PW, Rice CM, 1999. Yellow fever/Japanese encephalitis chimeric viruses: construction and biological properties. J Virol 73 :3095–3101.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Monath TP, Guirakhoo F, Nichols R, Yoksan S, Schrader R, Murphy C, Blum P, Woodward S, McCarthy K, Mathis D, Johnson C, Bedford P, 2003. Chimeric live, attenuated vaccine against Japanese encephalitis (ChimeriVax™-JE): Phase II clinical trials for safety and immunogenicity, effect of vaccine dose and schedule, and memory response to challenge with inactivated Japanese encephalitis antigen. J Infect Dis 188 :1213–1230.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Monath TP, McCarthy K, Bedford P, Johnson CT, Nichols R, Yoksan S, Marchesani R, Knauber M, Wells KH, Arroyo J, Guirakhoo F, 2002. Clinical proof of principle for Chimeri Vax™: recombinant live, attenuated vaccines against flavivirus infections. Vaccine 20 :1004–1018.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Whitman L, 1939. Failure of Aedes aegypti to transmit yellow fever cultured virus (17D). Am J Trop Med 19 :19–26.

  • 6

    Bhatt TR, Crabtree MB, Guirakhoo F, Monath TP, Miller BR, 2000. Growth characteristics of the chimeric Japanese encephalitis virus vaccine candidate, ChimeriVax™-JE (YF/JE SA14-14-2), in Culex tritaeniorhynchus, Aedes albopictus and Aedes aegypti mosquitoes. Am J Trop Med Hyg 62 :480–484.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Ritchie SA, Phillips D, Broom A, Mackenzie J, Poidinger M, van den Hurk A, 1997. Isolation of Japanese encephalitis virus from Culex annulirostris in Australia. Am J Trop Med Hyg 56 :80–84.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Johansen CA, van den Hurk AF, Ritchie SA, Zborowski P, Nisbet DJ, Paru R, Bockarie MJ, Macdonald J, Drew AC, Khromykh TI, Mackenzie JS, 2000. Isolation of Japanese encephalitis virus from mosquitoes (Diptera: Culicidae) collected in the Western Province of Papua New Guinea, 1997–1998. Am J Trop Med Hyg 62 :631–638.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Johansen CA, van den Hurk AF, Pyke AT, Zborowski P, Phillips DA, Mackenzie JS, Ritchie SA, 2001. Entomological investigation of an outbreak of Japanese encephalitis virus in the Torres Strait, Australia in 1998. J Med Entomol 38 :581–588.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    van den Hurk AF, Nisbet DJ, Hall RA, Kay BH, Mackenzie JS, Ritchie SA, 2003. Vector competence of Australian mosquitoes (Diptera: Culicidae) for Japanese encephalitis virus. J Med Entomol 40 :82–90.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Karabatsos N, Buckley SM, 1967. Susceptibility of the baby-hamster kidney-cell line (BHK-21) to infection with Arboviruses. Am J Trop Med Hyg 16 :99–105.

  • 12

    Rhim JS, Schell K, Creasy B, Case W, 1969. Biological characteristics and viral susceptibility of an African green monkey kidney cell line (Vero). Proc Soc Exp Biol Med 132 :670–678.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Gorman BM, Leer JR, Filippich C, Goss PD, Doherty RL, 1975. Plaquing and neutralisation of arboviruses in the PS-EK line of cells. Aust J Med Tech 6 :65–71.

  • 14

    Rosen L, Gubler D, 1974. The use of mosquitoes to detect and propagate dengue viruses. Am J Trop Med Hyg 23 :1153–1160.

  • 15

    Hardy JL, 1988. Susceptibility and resistance of vector mosquitoes. Monath TP, ed. The Arboviruses: Ecology and Epidemiology. Volume 1. Boca Raton, FL: CRC Press. 87–126.

    • PubMed
    • Export Citation
  • 16

    Johnson BW, Chambers TV, Crabtree MB, Arroyo J, Monath TP, Miller BR, 2003. Growth characteristics of the veterinary vaccine candidate ChimeriVax™-West Nile (WN) virus in Aedes and Culex mosquitoes. Med Vet Entomol 17 :235–243.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Johnson BW, Chambers TV, Crabtree MB, Bhatt TR, Guirakhoo F, Monath TP, Miller BR, 2002. Growth characteristics of ChimeriVax™-DEN2 vaccine virus in Aedes aegypti and Aedes albopictus mosquitoes. Am J Trop Med Hyg 67 :260–265.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Johnson BW, Chambers TV, Crabtree MB, Guirakhoo F, Monath TP, Miller BR, 2004. Analysis of the replication kinetics of the ChimeriVax™-DEN 1,2,3,4 tetravalent virus mixture in Aedes aegypti by real-time reverse transcriptase-polymerase chain reaction. Am J Trop Med Hyg 70 :89–97.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    World Health Organization, 1998. Requirements for yellow fever vaccine (requirements for biological substances no. 3, revised 1995). World Health Organ Tech Rep Ser 872 :517–537.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 236 212 25
Full Text Views 318 6 1
PDF Downloads 52 8 1
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save