INDUCTION OF NEUTRALIZING ANTIBODIES SPECIFIC TO DENGUE VIRUS SEROTYPES 2 AND 4 BY A BIVALENT ANTIGEN COMPOSED OF LINKED ENVELOPE DOMAINS III OF THESE TWO SEROTYPES

SAIMA KHANAM International Centre for Genetic Engineering and Biotechnology, New Delhi, India

Search for other papers by SAIMA KHANAM in
Current site
Google Scholar
PubMed
Close
,
BEHZAD ETEMAD International Centre for Genetic Engineering and Biotechnology, New Delhi, India

Search for other papers by BEHZAD ETEMAD in
Current site
Google Scholar
PubMed
Close
,
NAVIN KHANNA International Centre for Genetic Engineering and Biotechnology, New Delhi, India

Search for other papers by NAVIN KHANNA in
Current site
Google Scholar
PubMed
Close
, and
SATHYAMANGALAM SWAMINATHAN International Centre for Genetic Engineering and Biotechnology, New Delhi, India

Search for other papers by SATHYAMANGALAM SWAMINATHAN in
Current site
Google Scholar
PubMed
Close
Restricted access

There is no vaccine to prevent dengue fever, a mosquito-borne viral disease, caused by four serotypes of dengue viruses. In this study, which has been prompted by the emergence of dengue virus envelope domain III as a promising sub-unit vaccine candidate, we have examined the possibility of developing a chimeric bivalent antigen with the potential to elicit neutralizing antibodies against two serotypes simultaneously. We created a chimeric dengue antigen by splicing envelope domain IIIs of serotypes 2 and 4. It was expressed in Escherichia coli and purified to near homogeneity. This protein retains the antigenic identitities of both its precursors. It elicited antibodies that could efficiently block host cell binding of both serotypes 2 and 4 of dengue virus and neutralize their infectivity (neutralizing antibody titers approximately 1:40 and ~1:80 for dengue virus serotypes 2 and 4, respectively). This work could be a forerunner to the development of a single envelope domain III-based tetravalent antigen.

Author Notes

  • 1

    Gubler DJ, 1998. Dengue and dengue haemorrhagic fever. Clin Microbiol Rev 11 :480–496.

  • 2

    Gubler DJ, 2002. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10 :100–103.

  • 3

    Hales S, de Wet N, Maindonald J, Woodward J, 2002. Potential effects of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 360 :830–834.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Lindenbach BD, Rice CM, 2001. Flaviviridae: the viruses and their replication. Knipe DM, Howley PM, eds. Field’s Virology. Fourth edition. Philadelphia: Lippincott Williams & Wilkins, 991–1041.

    • PubMed
    • Export Citation
  • 5

    Innis BL, 1997. Antibody responses to dengue virus infection. Gubler DJ, Kuno G, eds. Dengue and Dengue Hemorrhagic Fever. Wallingford, United Kingdom: CAB International, 221–243.

    • PubMed
    • Export Citation
  • 6

    Kurane I, Ennis FA, 1997. Immunopathogenesis of dengue virus infections. Gubler DJ, Kuno G, eds. Dengue and Dengue Hemorrhagic Fever. Wallingford, United Kingdom: CAB International, 273–290.

    • PubMed
    • Export Citation
  • 7

    Rothman AL, 2004. Dengue: defining protective versus pathologic immunity. J Clin Invest 113 :946–951.

  • 8

    Hombach J, Barrett AD, Cardosa MJ, Deubel V, Guzman M, Kurane I, Roehrig JT, Sabchareon A, Kieny MP, 2005. Meeting report on “Review on flavivirus vaccine development: proceedings of a meeting jointly organized by the World Health Organization and the Thai ministry of public health”, 26–27 April 2004, Bangkok, Thailand. Vaccine 23 :2689–2695.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Saluzzo JF, 2003. Empirically derived live-attenuated vaccines against dengue and Japanese encephalitis. Adv Virus Res 61 :419–443.

  • 10

    Jacobs M, Young P, 2003. Dengue vaccines: preparing to roll back dengue. Curr Opin Investig Drugs 4 :168–171.

  • 11

    Pugachev KV, Guirakhoo F, Trent DW, Monath TP, 2003. Traditional and novel approaches to flavivirus vaccines. Intl J Parasitol 33 :567–582.

  • 12

    Guirakhoo F, Arroyo J, Pugachev KV, Miller C, Zhang ZX, Weltzin R, Georgakopoulos K, Catalan J, Ocran S, Soike K, Ratterree M, Monath TP, 2001. Construction, safety, and immunogenicity in nonhuman primates of a chimeric yellow fever-dengue virus tetravalent vaccine. J Virol 75 :7290–7304.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Guirakhoo F, Pugachev K, Arroyo J, Miller C, Zhang ZX, Weltzin R, Georgakopoulos K, Catalan J, Ocran S, Draper K, Monath TP, 2002. Viremia and immunogenicity in nonhuman primates of a tetravalent yellow fever-dengue chimeric vaccine: genetic reconstructions, dose adjustment, and antibody responses against wild-type dengue virus isolates. Virology 298 :146–159.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Blaney JE Jr, Matro JM, Murphy BR, Whitehead SS, 2005. Recombinant, live attenuated tetravalent dengue virus vaccine formulations induce a balanced, broad, and protective neutralizing antibody response against each of the four serotypes in rhesus monkeys. J Virol 79 :5516–5528.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Fonseca BAL, Pincus S, Shope RE, Paoletti E, Mason PW, 1994. Recombinant vaccinia viruses co-expressing dengue-1 glycoproteins prM and E induce neutralizing antibodies in mice. Vaccine 12 :279–285.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Jaiswal S, Khanna N, Swaminathan S, 2003. Replication-defective adenoviral vaccine vector for the induction of immune responses to dengue virus type-2. J Virol 77 :12907–12913.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Men R, Wyatt L, Tokimatsu I, Arakaki S, Shameem G, Elkins R, Chanock R, Moss B, Lai CJ, 2000. Immunization of rhesus monkeys with a recombinant of modified vaccinia virus Ankara expressing a truncated envelope glycoprotein of dengue type 2 virus induced resistance to dengue type 2 virus challenge. Vaccine 18 :3113–3122.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Mota J, Acosta M, Argotte R, Figueroa R, Méndez A, Ramos C, 2005. Induction of protective antibodies against dengue virus by tetravalent DNA immunization of mice with domain III of the envelope protein. Vaccine 23 :3469–3476.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Raviprakash K, Kochel TJ, Ewing D, Simmons M, Phillips I, Hayes CG, Porter KR, 2000. Immunogenicity of dengue virus type 1 DNA vaccines expressing truncated and full length envelope protein. Vaccine 18 :2426–2434.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Konishi E, Yamaoka M, Kurane I, Mason PW, 2000. A DNA vaccine expressing dengue type 2 virus premembrane and envelope genes induces neutralizing antibody and memory B cells in mice. Vaccine 18 :1133–1139.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Chiu MW, Yang YL, 2003. Blocking the dengue virus 2 infections on BHK-21 cells with purified recombinant dengue virus 2 E protein expressed in Escherichia coli. Biochem Biophys Res Commun 309 :672–678.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Simmons M, Nelson WM, Wu SJL, Hayes CG, 1998. Evaluation of the protective efficacy of a recombinant dengue envelope B domain fusion protein against dengue 2 virus infection in mice. Am J Trop Med Hyg 58 :655–662.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Jaiswal S, Khanna N, Swaminathan S, 2004. High-level expression and one-step purification of recombinant dengue virus type-2 envelope domain III protein in Escherichia coli. Protein Expr Purif 33 :80–91.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Hung JJ, Hsieh MT, Young MJ, Kao CL, King CC, Chang W, 2004. An external loop region of domain III of dengue virus type 2 envelope protein is involved in serotype-specific binding to mosquito but not mammalian cells. J Virol 78 :378–388.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Sugrue RJ, Cui T, Xu Q, Fu J, Chan YC, 1997. The production of recombinant dengue virus E protein using Escherichia coli and Pichia pastoris. J Virol Methods 69 :159–169.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Hermida L, Rodríguez R, Lazo L, Lopez C, Márquez G, Páez R, Suárez C, Espinosa R, Garcia J, Guzmán G, Guillén G, 2002. A recombinant envelope protein from dengue virus purified by IMAC is bioequivalent with its immune-affinity chromatography purified counterpart. J Biotechnol 94 :213–216.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Bisht H, Chugh DA, Raje M, Swaminathan S, Khanna N, 2002. Recombinant dengue virus type 2 envelope/hepatitis B surface antigen hybrid protein expressed in Pichia pastoris can function as a bivalent antigen. J Biotech 99 :97–110.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Guzmán MG, Rodríguez R, Rodríguez R, Hermida L, Alvarez M, Lazo L, Muné M, Rosario D, Valdés K, Vázquez S, Martinez R, Serrano T, Paez J, Espinosa R, Pumariega T, Guillén G, 2003. Induction of neutralizing antibodies and partial protection from viral challenge in Macaca fascicularis immunized with recombinant dengue 4 virus envelope glycoprotein expressed in Pichia pastoris. Am J Trop Med Hyg 69 :129–134.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Kelly EP, Greene JJ, King AD, Innis BL, 2000. Purified dengue 2 virus envelope glycoprotein aggregates produced by baculovirus are immunogenic in mice. Vaccine 18 :2549–2559.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Ivy J, Nakano E, Clements D, 2000. Methods of preparing carboxy-terminally truncated recombinant flavivirus envelope glycoproteins employing Drosophila melanogaster expression systems. US Patent 6,136,561.

    • PubMed
    • Export Citation
  • 31

    Henchal EA, Putnak JR, 1990. The dengue viruses. Clin Microbiol Rev 3 :376–396.

  • 32

    Bray M, Lai CJ, 1991. Dengue virus premembrane and membrane proteins elicit a protective immune response. Virology 185 :505–508.

  • 33

    Churdboonchart V, Bhamarapravati N, Peampramprecha S, Sirinavin S, 1991. Antibodies against dengue viral proteins in primary and secondary dengue hemorrhagic fever. Am J Trop Med Hyg 44 :481–493.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Crill WD, Roehrig RT, 2001. Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J Virol 75 :7769–7773.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Mégret F, Hugnot JP, Falconar A, Gentry MK, Morens DM, Murray JM, Schlesinger JJ, Wright PJ, Young P, van Regenmortel MHV, Deubel V, 1992. Use of recombinant fusion proteins and monoclonal antibodies to define linear and discontinuous antigenic sites on the dengue envelope glycoprotein. Virology 187 :480–491.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Roehrig JT, Bolin RA, Kelly RG, 1998. Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. Virology 246 :317–328.

  • 37

    Roehrig JT, Johnson AJ, Hunt AR, Bolin RA, Chu MC, 1990. Antibodies to dengue 2 virus E-glycoprotein synthetic peptides identify antigenic conformation. Virology 177 :668–675.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    Modis Y, Ogata S, Clements D, Harrison SC, 2003. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A 100 :6986–6991.

  • 39

    Modis Y, Ogata S, Clements D, Harrison SC, 2004. Structure of the dengue virus envelope protein after membrane fusion. Nature 427 :313–319.

  • 40

    Modis Y, Ogata S, Clements D, Harrison SC, 2005. Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J Virol 79 :1223–1231.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Bhardwaj S, Holbrook M, Shope RE, Barrett ADT, Watowich SJ, 2001. Biophysical characterization and vector-specific antagonist activity of domain III of the tick-borne flavivirus envelope protein. J Virol 75 :4002–4007.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    Kuhn RJ, Zhang W, Rossman MG, Pletnev SV, Corver J, Lenches E, Jones CT, Mukhopadhyay S, Chipman PR, Strauss EG, Baker TS, Strauss JH, 2002. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108 :717–725.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43

    Chen Y, Maguire T, Hileman RE, Fromm JR, Esko JD, Linhardt RJ, Marks RM, 1997. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nature Med 3 :866–871.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Simmons M, Murphy GS, Hayes CG, 2001. Short report: antibody responses of mice immunized with a tetravalent dengue recombinant protein subunit vaccine. Am J Trop Med Hyg 65 :159–161.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45

    Bisht H, Chugh DA, Swaminathan S, Khanna N, 2001. Expression and purification of a dengue virus type 2 envelope protein as a fusion with hepatitis B surface antigen in Pichia pastoris. Protein Expr Purif 23 :84–96.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46

    AnandaRao R, Swaminathan S, Fernando S, Jana AM, Khanna N, 2005. A custom-designed recombinant multiepitope protein as a dengue diagnostic reagent. Protein Expr Purif 41 :136–147.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47

    Golovanov AP, Hautbergue GM, Wilson SA, Lian LY, 2004. A simple method for improving protein solubility and long-term stability. J Am Chem Soc 126 :8933–8939.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48

    Robinson CR, Sauer RT, 1998. Optimizing the stability of single-chain proteins by linker length and composition mutagenesis. Proc Natl Acad Sci U S A 95 :5929–5934.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49

    Trirawatanapong T, Chandran B, Putnak R, Padmanabhan R, 1992. Mapping of a region of dengue virus type-2 glycoprotein required for binding by a neutralizing monoclonal antibody. Gene 116 :139–150.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50

    Putnak RP, Feighny R, Burrous J, Cochran M, Hackett C, Smith G, Hoke C, 1991. Dengue-1 virus envelope glycoprotein gene expressed in recombinant baculovirus elicits virus-neutralizing antibody in mice and protects them from virus challenge. Am J Trop Med Hyg 45 :159–167.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51

    Delenda C, Staropoli I, Frenkiel MP, Cabanié L, Deubel V, 1994. Analysis of C-terminally truncated dengue 2 and dengue 3 virus envelope glycoproteins: processing in insect cells and immunogenic properties in mice. J Gen Virol 75 :1569–1578.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 141 116 15
Full Text Views 319 3 1
PDF Downloads 77 3 1
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save