Volume 96, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



The first approved dengue vaccine, CYD-TDV, a chimeric, live-attenuated, tetravalent dengue virus vaccine, was recently licensed in 13 countries, including Brazil. In light of recent vaccine approval, we modeled the cost-effectiveness of potential vaccination policies mathematically based on data from recent vaccine efficacy trials that indicated that vaccine efficacy was lower in seronegative individuals than in seropositive individuals. In our analysis, we investigated several vaccination programs, including routine vaccination, with various vaccine coverage levels and those with and without large catch-up campaigns. As it is unclear whether the vaccine protects against infection or just against disease, our model incorporated both direct and indirect effects of vaccination. We found that in the presence of vaccine-induced indirect protection, the cost-effectiveness of dengue vaccination decreased with increasing vaccine coverage levels because the marginal returns of herd immunity decreases with vaccine coverage. All routine dengue vaccination programs that we considered were cost-effective, reducing dengue incidence significantly. Specifically, a routine dengue vaccination of 9-year-olds would be cost-effective when the cost of vaccination per individual is less than $262. Furthermore, the combination of routine vaccination and large catch-up campaigns resulted in a greater reduction of dengue burden (by up to 93%) than routine vaccination alone, making it a cost-effective intervention as long as the cost per course of vaccination is $255 or less. Our results show that dengue vaccination would be cost-effective in Brazil even with a relatively low vaccine efficacy in seronegative individuals.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Article metrics loading...

Loading full text...

Full text loading...



  1. Fares RC, Souza KP, Anez G, Rios M, , 2015. Epidemiological scenario of dengue in Brazil. BioMed Res Int 2015: 321873.[Crossref]
  2. World Health Organization, 2009. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition. Geneva, Switzerland: World Health Organization.
  3. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI, , 2013. The global distribution and burden of dengue. Nature 496: 504507.[Crossref]
  4. Halstead SB, , 1988. Pathogenesis of dengue: challenges to molecular biology. Science 239: 476481.[Crossref]
  5. Endy TP, Nisalak A, Chunsuttitwat S, Vaughn DW, Green S, Ennis FA, Rothman AL, Libraty DH, , 2004. Relationship of preexisting dengue virus (DV) neutralizing antibody levels to viremia and severity of disease in a prospective cohort study of DV infection in Thailand. J Infect Dis 189: 9901000.[Crossref]
  6. Halstead SB, , 1982. Immune enhancement of viral infection. Prog Allergy 31: 301364.
  7. World Health Organization, 2017. Dengue vaccine: WHO position paper, July 2016 - recommendations. Vaccine 35: 12001201.
  8. Ferguson NM, Rodríguez-Barraquer I, Dorigatti I, Mier-y-Teran-Romero L, Laydon DJ, Cummings DA, , 2016. Benefits and risks of the Sanofi-Pasteur dengue vaccine: modeling optimal deployment. Science 353: 10331036.[Crossref]
  9. Guy B, Guirakhoo F, Barban V, Higgs S, Monath TP, Lang J, , 2010. Preclinical and clinical development of YFV 17D-based chimeric vaccines against dengue, West Nile and Japanese encephalitis viruses. Vaccine 28: 632649.[Crossref]
  10. Capeding MR, Tran NH, Hadinegoro SR, Ismail HI, Chotpitayasunondh T, Chua MN, Luong CQ, Rusmil K, Wirawan DN, Nallusamy R, Pitisuttithum P, Thisyakorn U, Yoon IK, van der Vliet D, Langevin E, Laot T, Hutagalung Y, Frago C, Boaz M, Wartel TA, Tornieporth NG, Saville M, Bouckenooghe A, CYD14 Study Group; , 2014. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: a phase 3, randomised, observer-masked, placebo-controlled trial. Lancet 384: 13581365.[Crossref]
  11. Villar L, Dayan GH, Arredondo-Garcia JL, Rivera DM, Cunha R, Deseda C, Reynales H, Costa MS, Morales-Ramirez JO, Carrasquilla G, Rey LC, Dietze R, Luz K, Rivas E, Montoya MC, Supelano MC, Zambrano B, Langevin E, Boaz M, Tornieporth N, Saville M, Noriega F, CYD15 Study Group; , 2015. Efficacy of a tetravalent dengue vaccine in children in Latin America. N Engl J Med 372: 113123.[Crossref]
  12. Hadinegoro SR, Arredondo-Garcia JL, Capeding MR, Deseda C, Chotpitayasunondh T, Dietze R, Muhammad Ismail HI, Reynales H, Limkittikul K, Rivera-Medina DM, Tran HN, Bouckenooghe A, Chansinghakul D, Cortes M, Fanouillere K, Forrat R, Frago C, Gailhardou S, Jackson N, Noriega F, Plennevaux E, Wartel TA, Zambrano B, Saville M, CYD-TDV Dengue Vaccine Working Group; , 2015. Efficacy and long-term safety of a dengue vaccine in regions of endemic disease. N Engl J Med 373: 11951206.[Crossref]
  13. Hladish TJ, Pearson CA, Chao DL, Rojas DP, Recchia GL, Gomez-Dantes H, Halloran ME, Pulliam JR, Longini IM, , 2016. Projected impact of dengue vaccination in Yucatan, Mexico. PLoS Negl Trop Dis 10: e0004661.[Crossref]
  14. Aguiar M, Stollenwerk N, Halstead SB, , 2016. The risks behind Dengvaxia recommendation. Lancet Infect Dis 16: 882883.[Crossref]
  15. Shepard DS, Suaya JA, Halstead SB, Nathan MB, Gubler DJ, Mahoney RT, Wang DN, Meltzer MI, , 2004. Cost-effectiveness of a pediatric dengue vaccine. Vaccine 22: 12751280.[Crossref]
  16. Lee BY, Connor DL, Kitchen SB, Bacon KM, Shah M, Brown ST, Bailey RR, Laosiritaworn Y, Burke DS, Cummings DA, , 2011. Economic value of dengue vaccine in Thailand. Am J Trop Med Hyg 84: 764772.[Crossref]
  17. Carrasco LR, Lee LK, Lee VJ, Ooi EE, Shepard DS, Thein TL, Gan V, Cook AR, Lye D, Ng LC, Leo YS, , 2011. Economic impact of dengue illness and the cost-effectiveness of future vaccination programs in Singapore. PLoS Negl Trop Dis 5: e1426.[Crossref]
  18. Durham DP, Ndeffo Mbah ML, Medlock J, Luz PM, Meyers LA, Paltiel AD, Galvani AP, , 2013. Dengue dynamics and vaccine cost-effectiveness in Brazil. Vaccine 31: 39573961.[Crossref]
  19. Orellano PW, Reynoso JI, Stahl HC, Salomon OD, , 2016. Cost-utility analysis of dengue vaccination in a country with heterogeneous risk of dengue transmission. Vaccine 34: 616621.[Crossref]
  20. Flasche S, Jit M, Rodriguez-Barraquer I, Coudeville L, Recker M, Koelle K, Milne G, Hladish TJ, Perkins TA, Cummings DA, Dorigatti I, Laydon DJ, Espana G, Kelso J, Longini I, Lourenco J, Pearson CA, Reiner RC, Mier-y-Teran-Romero L, Vannice K, Ferguson N, , 2016. The long-term safety, public health impact, and cost-effectiveness of routine vaccination with a recombinant, live-attenuated dengue vaccine (Dengvaxia): a model comparison study. PLoS Med 13: e1002181.[Crossref]
  21. Shim E, , 2016. Dengue dynamics and vaccine cost-effectiveness analysis in the Philippines. Am J Trop Med Hyg 95: 11371147.[Crossref]
  22. Shepard DS, Undurraga EA, Halasa YA, Stanaway JD, , 2016. The global economic burden of dengue: a systematic analysis. Lancet Infect Dis 16: 935941.[Crossref]
  23. Shim E, , 2016. Dengue dynamics and vaccine cost-effectiveness analysis in the Philippines. Am J Trop Med Hyg 95: 11371147.[Crossref]
  24. Halstead SB, Russell PK, , 2016. Protective and immunological behavior of chimeric yellow fever dengue vaccine. Vaccine 34: 16431647.[Crossref]
  25. Gibbons RV, Kalanarooj S, Jarman RG, Nisalak A, Vaughn DW, Endy TP, Mammen MP, Jr Srikiatkhachorn A, , 2007. Analysis of repeat hospital admissions for dengue to estimate the frequency of third or fourth dengue infections resulting in admissions and dengue hemorrhagic fever, and serotype sequences. Am J Trop Med Hyg 77: 910913.
  26. Olkowski S, Forshey BM, Morrison AC, Rocha C, Vilcarromero S, Halsey ES, Kochel TJ, Scott TW, Stoddard ST, , 2013. Reduced risk of disease during postsecondary dengue virus infections. J Infect Dis 208: 10261033.[Crossref]
  27. Pandey A, Medlock J, , 2015. The introduction of dengue vaccine may temporarily cause large spikes in prevalence. Epidemiol Infect 143: 12761286.[Crossref]
  28. Halstead SB, , 2003. Neutralization and antibody-dependent enhancement of dengue viruses. Adv Virus Res 60: 421467.[Crossref]
  29. Nagao Y, Koelle K, , 2008. Decreases in dengue transmission may act to increase the incidence of dengue hemorrhagic fever. Proc Natl Acad Sci USA 105: 22382243.[Crossref]
  30. Adams B, Boots M, , 2006. Modelling the relationship between antibody-dependent enhancement and immunological distance with application to dengue. J Theor Biol 242: 337346.[Crossref]
  31. Edillo FE, Halasa YA, Largo FM, Erasmo JN, Amoin NB, Alera MT, Yoon IK, Alcantara AC, Shepard DS, , 2015. Economic cost and burden of dengue in the Philippines. Am J Trop Med Hyg 92: 360366.[Crossref]
  32. Cordeiro MT, Silva AM, Brito CA, Nascimento EJ, Magalhaes MC, Guimaraes GF, Lucena-Silva N, de Carvalho EM, Marques ET, Jr, 2007. Characterization of a dengue patient cohort in Recife, Brazil. Am J Trop Med Hyg 77: 11281134.
  33. Shepard DS, Coudeville L, Halasa YA, Zambrano B, Dayan GH, , 2011. Economic impact of dengue illness in the Americas. Am J Trop Med Hyg 84: 200207.[Crossref]
  34. Araujo DV, Bahia L, Rendeiro M, Pinho AS, Genovez V, de Menezes Gonçalves T, Abreu M, , 2016. Estimation of the potential impact of dengue vaccination on clinical outcomes in Brazil. Journal Brasileiro de Economia da Saúde 8: 315.[Crossref]
  35. Ndeffo Mbah ML, Durham DP, Medlock J, Galvani AP, , 2014. Country- and age-specific optimal allocation of dengue vaccines. J Theor Biol 342: 1522.[Crossref]
  36. PAHO, 2010. Vaccine Introduction Guidelines 2010. Available at: http://new.paho.org/hq/dmdocuments/2010/FieldGuide_NewVaccines_1stEd_e.pdf. Accessed August 30, 2016.
  37. Luz PM, Vanni T, Medlock J, Paltiel AD, Galvani AP, , 2011. Dengue vector control strategies in an urban setting: an economic modelling assessment. Lancet 377: 16731680.[Crossref]
  38. Von Allmen SD, Lopez-Correa RH, Woodall JP, Morens DM, Chiriboga J, Casta-Velez A, , 1979. Epidemic dengue fever in Puerto Rico, 1977: a cost analysis. Am J Trop Med Hyg 28: 10401044.
  39. Johansson MA, Hombach J, Cummings DA, , 2011. Models of the impact of dengue vaccines: a review of current research and potential approaches. Vaccine 29: 58605868.[Crossref]
  40. Gubler DJ, , 1998. Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11: 480496.
  41. Guy B, Jackson N, , 2016. Dengue vaccine: hypotheses to understand CYD-TDV-induced protection. Nat Rev Microbiol 14: 4554.[Crossref]
  42. Coudeville L, Baurin N, Vergu E, , 2016. Estimation of parameters related to vaccine efficacy and dengue transmission from two large phase III studies. Vaccine 34: 64176425.[Crossref]
  43. Martelli CM, Siqueira JB, Jr Parente MP, Zara AL, Oliveira CS, Braga C, Pimenta FG, Jr Cortes F, Lopez JG, Bahia LR, Mendes MC, da Rosa MQ, de Siqueira Filha NT, Constenla D, de Souza WV, , 2015. Economic impact of dengue: multicenter study across four Brazilian regions. PLoS Negl Trop Dis 9: e0004042.[Crossref]
  44. Murray CJ, , 1994. Quantifying the burden of disease: the technical basis for disability-adjusted life years. Bull World Health Organ 72: 429445.
  45. Dantes HG, Farfan-Ale JA, Sarti E, , 2014. Epidemiological trends of dengue disease in Mexico (2000–2011): a systematic literature search and analysis. PLoS Negl Trop Dis 8: e3158.[Crossref]
  46. Chao DL, Halstead SB, Halloran ME, Longini IM, Jr, 2012. Controlling dengue with vaccines in Thailand. PLoS Negl Trop Dis 6: e1876.[Crossref]
  47. Rodriguez-Barraquer I, Mier-y-Teran-Romero L, Schwartz IB, Burke DS, Cummings DA, , 2014. Potential opportunities and perils of imperfect dengue vaccines. Vaccine 32: 514520.[Crossref]
  48. Anderson KB, Chunsuttiwat S, Nisalak A, Mammen MP, Libraty DH, Rothman AL, Green S, Vaughn DW, Ennis FA, Endy TP, , 2007. Burden of symptomatic dengue infection in children at primary school in Thailand: a prospective study. Lancet 369: 14521459.[Crossref]
  49. Smith KJ, Raviotta JM, DePasse JV, Brown ST, Shim E, Patricia Nowalk M, Zimmerman RK, , 2016. Cost effectiveness of influenza vaccine choices in children aged 2–8 years in the U.S. Am J Prev Med 50: 600608.[Crossref]
  50. Goldie SJ, Kim JJ, Kobus K, Goldhaber-Fiebert JD, Salomon J, O'Shea MK, Xavier Bosch F, de Sanjose S, Franco EL, , 2007. Cost-effectiveness of HPV 16, 18 vaccination in Brazil. Vaccine 25: 62576270.[Crossref]
  51. Shim E, Galvani AP, , 2009. Impact of transmission dynamics on the cost-effectiveness of rotavirus vaccination. Vaccine 27: 40254030.[Crossref]
  52. United States Department of Labor, 2007. The Consumer Price Indexes (CPI): All Urban Consumers. Available at: http://stats.bls.gov/cpi/home.htm. Accessed November 26, 2007.
  53. CIA, 2017. The World Factbook—Brazil. Available at: https://www.cia.gov/library/publications/the-world-factbook/geos/br.html. Accessed August 30, 2016.
  54. WHO, 2002. World Health Report 2002: Reducing Risks, Promoting Healthy Life, Report of the Commission on Macroeconomics and Health. Geneva, Switzerland: World Health Organization.
  55. The World Bank, 2016. GDP Per Capita. Available at: http://data.worldbank.org/indicator/NY.GDP.PCAP.CD?locations=BR. Accessed August 30, 2016.
  56. Rodriguez-Barraquer I, Mier-y-Teran-Romero L, Burke DS, Cummings DA, , 2013. Challenges in the interpretation of dengue vaccine trial results. PLoS Negl Trop Dis 7: e2126.[Crossref]

Data & Media loading...

Supplementary Data

Supplemental Information and Figure

  • Received : 15 Oct 2016
  • Accepted : 26 Jan 2017

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error